HP Instrument BASIC
Users Handbook

/2 Facicann

HP Part No. E2083-90000
Printed in USA

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in this document.
HP MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS DOCUMENT,
WHETHER EXPRESS OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HP shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted. Additional
copies of the software can be made for security and backup purposes only. Resale of the
software in its present form or with alterations is expressly prohibited.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

© Copyright 1990 Hewlett-Packard Company. All rights reserved.

Printing History

This is the second printing of the HP Instrument BASIC Users Handbook. Changes in this
manual include support for MS-DOSE file systems.

February 1990 - First Edition
August 1990 - Second Edition

Handbook Organization

Welcome

This manual will introduce you to the HP Instrument BASIC programming language, provide
some helpful hints on getting the most use from it, and provide a general programming
reference. It is divided into three books, HP Instrument BASIC Programming Techniques, HP
Instrument BASIC Interfacing Techniques, and HP Instrument BASIC Language Reference.
The first two books provide some introductory material on programming and interfacing.
However, if you have no programming knowledge, you might find it helpful to study a
beginning level programming book.

This manual assumes that you are familiar with the operation of HP Instrument BASIC’s
front-panel interface or keyboard and have read or reviewed the manual which describes
operation of HP Instrument BASIC with your specific instrument.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What’s In This Handbook?

HP Instrument BASIC Programming Techniques contains explanations and programming
hints organized by concepts and topics. It is not a complete keyword reference. Instead it
covers programming concepts, showing how to use the HP Instrument BASIC language.

For explanations and hints regarding interfacing, see the HP Instrument BASIC Interfacing
Techniques book.

HP Instrument BASIC Language Reference contains a detailed keyword reference.

For HP BASIC Programmers 27

Many programmers already familiar with HP Series 200/300 BASIC will want to use the HP -
Instrument BASIC manual set to look up keywords and find necessary specifics about the way

HP Instrument BASIC is implemented. If this is your situation, you may want to refer to the

following manuals and sections as needed:

m “Graphics and Display Techniques”, in your instrument-specific manual for information on
using the display for graphics and text program output.

u “The HP-IB Model”, in your instrument-specific manual to learn how HP Instrument

BASIC interfaces with the host device, (if using an embedded controller) and its external
HP-IB port.

= “Interfacing with an External Controller”, in your instrument-specific manual for a
description of how to transfer data between external and internal programs, how to upload

and download programs and how to control HP Instrument BASIC programs from an
external controller.

n “Keyword Guide to Porting”, at the end of HP Instrument BASIC Programming
Techniques, for a quick determination of what commands are implemented and how they
relate to recent versions of the corresponding HP Series 200/300 BASIC command.

Most importantly, you will find a complete command reference and a list of error messages
in the HP Instrument BASIC Language Reference. If you need to refresh your memory on

any other topics, you can consult the manuals on Programming and Interfacing techniques as
necessary.

Contents

e]

1. Manual Organization

Welcome« ¢ v v i i e e e e e e e e e e e e e e e e e e e 1-1
What’s In This Manual? oo 1-1
Overviewof Chapters v v v v v v oo .. 1-1
What’s Notin thisManual oo v v o 1-2
2. Program Structure and Flow

Sequence L L e e e e e e e e e e e e e e e e e e e 2-1
Halting Program Execution 2-1
The END Statement oo o o000 2-1
The STOP Statement« v ¢ v v v v v v v o .. 2-1
The PAUSE Statement 2-2
Simple Branching 00000000 0oL 2-2
Using GOTO o v v vt v e e e e e e 2-2
Using GOSUB i i it e e e e e e 2-2
Selection e e e e e e e e e 2-3
Conditional Execution of One Segment 2-3
Prohibited Statements00 o000 L 2-4
Conditional Branching 2-4
Multiple-Line Conditional Segments 2-5
Choosing One of Two Segments 2-5
Choosing One of Many Segments 2-6
Repetition oo oo 2-7
Fixed Number of Iterations 2-7
Conditional Number of Iterations 2-8
Arbitrary Exit Pointso 0000 2-8
Event-Initiated Branching o000 2-10
Typesof Events 0o e e e 2-10
Deactivating Eventso 000000 2-11
Disabling Events 0000000 2-11
Chaining Programs e e e e e 2-11
UsingGET o o v v v v i i e e e 2-11
Example of Chaining with GET 2-12
Program-to-Program Communications 2-12

Contents-1

3. Numeric Computation

Numeric Data Types o v v v it
INTEGER Data Type v v v v v v e e e e e i
REALDataType v v v vt i e e e e
Declaring Variables
Assigning Variables L ...
Implicit Type Conversions
Evaluating Scalar Expressions
The Hierarchy
Operators
Expressions as Pass Parameters
Strings in Numeric Expressions
Step Functions
Comparing REAL Numbers
Resident Numerical Functions
Arithmetic Functions
Exponential Functions
Trigonometric Functions
Trigonometric Modes: Degrees and Radians
Binary Functions
Limit Functions,
Rounding Functions
Random Number Function
Time and Date Functions
Base Conversion Functions
General Functions

4. Numeric Arrays
Dimensioning an Array o e e
Some Examplesof Arrays
Problems with Implicit Dimensioning
Finding Out the Dimensionsof an Array
Using Individual Array Elements
Assigning an Individual Array Element
Extracting Single Values From Arrays
Filling Arrayso e e e e
Using the READ Statement to Fill an Entire Array
Printing Arrays L. L0 L oo
Printing an Entire Array
Passing Entire Arrays

5. String Manipulation
String Storage
String Arrays L L L e
Evaluating Expressions Containing Strings
Evaluation Hierarchy
String Concatenation
Relational Operations
Substrings
Single-Subscript Substrings L. L.
~ Double-Subscript Substrings

Contents-2

5-2
5-2

5-3
5-3
5-3
5-4
5-4
5-5

Special Considerationso .o e e e 5-6

String-Related Functionso e 5-6
Current String Length« . oo o 5-6
Substring Positiono o oo e e 5-6
String-to-Numeric Conversion o o . .o ... 5-7
Numeric-to-String Conversion <« o o oo 5-7

String Functionso oo 5-7
String Reverseo o e e e e e e e 5-8
String Repeat oo e e e e 5-8
Trimming a Stringo oo 5-8
Case CONVEISION . . v v « « v v v v o o v o o e e e e e e e e 5-8

Number-Base CONVErSION . . . « « « « « o v« o o o v v o o e .. 5-9

Subprograms and User-Defined Functions

Benefits of Subprograms oo oo o e 6-1
A Closer Look at Subprograms « ¢« o o o0 6-1
Calling and Executing a Subprogram 6-1
Differences Between Subprograms and Subroutines 6-2
Subprogram Locationo .o oo e 6-2
Subprogram and User-Defined Function Names 6-2
Difference Between a User-Defined Function and a Subprogram 6-2
REAL Precision Functions and String Functions 6-3
Program/Subprogram Communication 6-4
Parameter Lists ¢ ¢ . 0 0o e e e e e e e e 6-4
Formal Parameter Lists « . oo 6-4
Pass Parameter Lists« o000 6-5
Passing By Value vs. Passing By Reference 6-5
Example Pass and Corresponding Formal Parameter Lists 6-6
COMBIOCKS . + v v v i v e e e e e e e e e e e e e e e e e e e 6-7
COM vs. Pass Parameters « v v v v 0 v o o 0o .. 6-7
Hints for Using COM Blocks« .. . o o .. 6-8
Context Switching oo oo 6-9
Variable Initialization oo o0 6-10
Subprograms and Softkeyso 6-10
Subprograms and the RECOVER Statement 6-10
Editing Subprogramso oo 6-10
Inserting Subprograms o000 6-10
Deleting Subprogramso 6-11
Merging Subprogramso e oo 6-11
SUBENDand FNEND v v v v v v v v v 6-11
Recursion & &« v v v vt e e e e e e e e e e e e e e e e e 6-11

Data Storage and Retrieval

Storing Data in Programso 7-1
Storing Data in Variableso 00 7-1
Data Input by the User oo 0. 7-2
Using DATA and READ Statements 7-2

Examples i e e e e e e e e e e 7-3
Storage and Retrieval of Arrays 7-3
Moving the Data Pointer 7-4
File Input and Output (I/O)« o o oo o . 7-5

Contents-3

Brief Comparison of Available File Types

Creating Data Files
Overview of File I/0

A Closer Look at General File Access
OpeninganI/OPath
Assigning Attributes L. L L.,

Closing I/O Paths

A Closer Look at Using ASCII Files
Example of ASCIT FileI/O
Data Representations in ASCIT Files
Formatted OUTPUT with ASCII Files

Using VAL$. .

.........................

Formatted ENTER with ASCIT Files
A Closer Look at BDAT and HP-UX or DOS Files
Data Representations Available
Random vs. Serial Access
Data Representations Used in BDAT Files
BDAT Internal Representations (FORMAT OFF)
ASCII and Custom Data Representations
Data Representations with HP-UX and DOS Files
BDAT File System Sector

Defined Records .

Specifying Record Size (BDAT FilesOnly)
Choosing A Record Length (BDAT FilesOnly)
Writing Data to BDAT, HP-UX and DOS Files
Sequential (Serial) OUTPUT

Random OUTPUT

.........................

Reading Data From BDAT, HP-UX and DOS Files
Reading String Data FromaFile

Serial ENTER .
Random ENTER

Accessing Files with Single-Byte Records

Accessing Directories

Sending Catalogs to External Printers

8. Using a Printer

Selecting the System Printer

Device Selectors .

Using Device Selectors to Select Printers
Using Control Characters and Escape Sequences

Control Characters

Escape-Code Sequences

Formatted Printing .
Using Images . . .

.........................

Numeric Image Specifiers
String Image Specifiers
Additional Image Specifiers

Special Considerations

Contents-4

7-5
7-6
7-7

7-8

7-9
7-10
7-11
7-11
7-12
7-14
7-15
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-19
7-19
7-19
7-20
7-20
7-21
7-22
7-23
7-23
7-23
7-24
7-24
7-25
7-26
7-27
7-27

8-1
8-1
8-2
8-2
8-3
8-3
8-3

8-5
8-6
8-7

)

10.

Handling Errors

Anticipating Operator Errors o o000 9-1
Boundary Conditionso oo o 9-1
Trapping Errors o0 9-2
ON/OFFERROR ot vt v v o v v v oo v v 9-2
Choosing a Branch Type oo v o v v v v v v 9-2

ON ERROR Execution at Run-Time 9-2

ON ERROR Priority v o v v v v v v v oo e 9-2
Disabling Error Trapping(OFF ERROR) e e e e e e e e 9-3
ERRN, ERRLN, ERRL, ERRDS, ERRMS$ 9-3
ONERRORGOSUB ¢ i v v v b e e e e e e e e e e 9-4
ONERRORGOTO i o it i et e e e e e e e 9-4
ONERRORCALL o i i v it i v e e e e e e e s 9-5
Using ERRLN and ERRL in Subprograms 9-5
ONERRORRECOVER ¢« v v vttt i e v o s 9-6

Keyword Guide to Porting

Index

Contents-5

Manual Organization

—

Welcome

This manual is intended to introduce you to the HP Instrument BASIC programming
language and to provide some helpful hints on getting the most use from it. This manual
assumes that you are familiar with the operation of HP Instrument BASIC’s front-panel
interface or keyboard and have read or reviewed the manual which came with your instrument
which describes operation of HP Instrument BASIC with your specific instrument. Most
topics concerning running, recording, loading, saving and debugging programs are covered
there. This manual serves as a general language reference and programming tutorial for

those with some rudimentary knowledge of programming in BASIC or another language. If
you have no programming knowledge, you might find it helpful to study a beginning level
programming book. However, some beginners may find that they are able to start in this
manual by concentrating on the fundamentals presented in the first few chapters. If you are a
programming expert or are already familiar with the BASIC language of other HP computers,
you may start faster by going directly to the HP Instrument BASIC Language Reference and
checking the keywords you normally use.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What’s In This Manual?

This manual contains explanations and programming hints organized by concepts and topics.
It is not a complete keyword reference. Instead it covers programming concepts, showing
how to use the HP Instrument BASIC language. HP Instrument BASIC Language Reference
contains a detailed keyword reference. For explanations and hints regarding interfacing, see
the HP Instrument BASIC Interfacing Technigques book.

The following section gives an overview of the chapters in this manual.

Overview of Chapters

Chapter Topics

Chapter 2: Program This chapter describes how the execution order of programs
Structure and Flow and how to direct and control it.

Chapter 3: Numeric This chapter covers mathematical operations and the use of
Computation numeric variables.

Chapter 4: Numeric Arrays This chapter covers numeric array operations.

Manual Organization 1-1

Chapter 5: String
Manipulation

Chapter 6: Subprograms and
User-Defined Functions

Chapter 7: Data Storage and
Retrieval

Chapter 8: Using a Printer
Chapter 9: Handling Errors

Chapter 10: Keyword Guide
to Porting

What’s Not in this Manual

This chapter explains the tools used for the processing of
characters, words, and text in your program.

This chapter describes using alternate contexts (or
environments), available as user-defined functions or
subprograms.

This chapter shows many of the alternatives available for
storing the data that is intended as program input or created
as program output.

This chapter tells how to use an external printer, and how to
use formatted printing for both printer and CRT output.

This chapter discusses techniques for intercepting errors that
might occur while a program is running.

This chapter summarizes the HP Instrument BASIC keywords
by categories, with differences between HP Instrument BASIC
and HP Series 200/300 BASIC.

This is a manual of programming techniques, helpful hints, and explanations of capabilities.

It is not a rigorous derivation of the HP Instrument BASIC language. Any statements
appropriate to the topic being discussed are included in each chapter, whether they have been
previously introduced or not. Since most users will not read this manual from cover to cover
anyway, the approach chosen should not present any significant problems. In those cases when
you have difficulty getting the meaning of certain items from context, consult the Index to

find additional information.

1-2 Manual Organization

()

Program Structure and Flow

There are four general categories of program flow. These are:
m Sequence

m Selection (conditional execution)

s Repetition

m Event-Initiated Branching

This chapter tells you how to use these types of program flow.

Sequence

The simplest form of sequence is linear flow. Linear flow allows many program lines
to be grouped together to perform a specific task in a predictable manner. Keep these
characteristics of linear flow in mind:

m Linear flow involves no decision making. Unless there is an error condition, the program
lines will always be executed in exactly the same order.

® Linear flow is the default mode of program execution. Unless your include a statement that
stops or alters program flow, the computer will always execute the next higher-numbered
line after finishing the line it is on.

Halting Program Execution

There are three statements that can halt program flow.

The END Statement

The primary purpose of the END statement is to mark the end of the main program. When
an END statement is executed, program flow stops and the program moves into the stopped
(non-continuable) state.

The STOP Statement

The STOP statement acts like an END statement in that it stops program flow. You can use
a STOP statement to halt program flow at some point other than the end of the program.
When a STOP statement is executed, program flow stops and the program moves into the
stopped (non-continuable) state.

Program Structure and Flow 2-1

The PAUSE Statement

You use the PAUSE statement to temporarily halt program execution, leaving the program
variables intact. Execution halts until instructed to continue by the operator.

Here is an example of the use of PAUSE:

100 Radius=5

110 Circum=PI*2sRadius
120 PRINT INT(Circum)
130 PAUSE

140 Area=PI*Radius"2
150 PRINT INT{Area)
160 END

When the program runs, and the computer prints 31 on the CRT. Then when you continue,
the computer prints 78 on the CRT. One common use for the PAUSE statement is in program
troubleshooting and debugging. Another use for PAUSE is to allow time for the computer
user to read messages or follow instructions.

Simple Branching

An alternative to linear flow is branching. Branching is simply a redirection of sequential flow.
The simplest form of branching uses the statements GOTO and GOSUB. Both statements
cause an unconditional branch to a specified location in a program.

Using GOTO

The GOTO statement causes the program to branch to either a line number or the line label.
Following are examples of the GOTO statement:

30 REM GOTO branches here
100 éOTO 30

150 éOTO Label _xyz

300 iaﬁel_xyz:

Using GOSUB

The GOSUB statement transfers program execution to a subroutine. A subroutine is simply a
segment of a program that is entered with a GOSUB and exited with a RETURN. There are
no parameters passed and no local variables are allowed in the subroutine.

The GOSUB is very useful in structuring and controlling programs. It is similar to a
procedure call in that program flow automatically returns to the line following the GOSUB
statement. The GOSUB statement can specify either the line label or the line number of the
desired subroutine entry point. The following are examples of GOSUB statements:

2-2 Program Structure and Flow

e

100 GOSUB 1000
200 GOSUB Label_abc

1000 REM subroutine begins here
1010 Label_abc:

1500 RETURN

Remember that each time a subroutine is called by a GOSUB, control returns to the line
immediately following the GOSUB when the RETURN is encountered in the subroutine. Note
that if you omit the RETURN statement in a subroutine the program will continue executing
beyond the point at which you expected it to return, until it encounters another RETURN or
one of the halting statements (PAUSE, STOP, or END).

Selection

The heart of a computer’s decision-making power is the category of program flow called
selection, or conditional execution. As the name implies, a certain segment of the program
either is or is not executed according to the results of a test or condition. This section
presents the conditional-execution statements according to various applications. The following
is a summary of these groupings.

m Conditional execution of one segment.
m Conditionally choosing one of two segments.

s Conditionally choosing one of many segments.

Conditional Execution of One Segment

The basic decision to execute or not execute a program segment is made by the IF ... THEN

statement. This statement includes a numeric expression that is evaluated as being either true
or false. If true (non-zero), the conditional segment is executed. If false (zero), the conditional
segment is bypassed. Note that any valid numeric expression is allowed for the test expression.

The conditional segment can be either a single HP Instrument BASIC statement or a program
segment containing any number of statements. The first example shows conditional execution
of a single statement.

100 IF Ph>7.7 THEN PRINT "Ph Value has been exceeded!

Notice the test (Ph>7.7) and the conditional statement (Print “Ph Value ... ”) which appear
on either side of the keyword THEN. When the computer executes this program line, it
evaluates the expression Ph>7.7. If the value contained in the variable Ph is 7.7 or less, the
expression evaluates to 0 (false), and the line is exited. If the value contained in the variable
Ph is greater than 7.7, the expression evaluates as 1 (true), and the PRINT statement is
executed.

Program Structure and Flow 2-3

Prohibited Statements

Certain statements are not allowed as the conditional statement in a single-line IF ... THEN.
The following statements are not allowed in a single-line IF ... THEN.

Keywords used in the declaration of variables:

COM DIM INTEGER REAL

Keywords that define context boundaries:

DEF FN FNEND SUB SUBEND END

Keywords that define program structures:

CASE END LOOP FOR REPEAT
CASE ELSE END SELECT IF SELECT
ELSE END WHILE LOOP UNTIL
END IF EXIT IF NEXT WHILE

Keywords used to identify lines that are literals;

DATA REM

Conditional Branching

Powerful control structures can be developed by using branching statements in an IF ...
THEN. For example:

110 IF Free_space<100 THEN GOSUB Expand_file
120 ! The line after is always executed

This statement checks the value of a variable called Free_space, and executes a file-expansion
subroutine if the value tested is not large enough. One important feature of this structure

is that the program flow is essentially linear, except for the conditional “side trip” to a
subroutine and back.

The conditional GOTO is such a commonly used technique that the computer allows a special
case of syntax to specify it. Assuming that line number 200 is labeled “Start”, the following
statements will all cause a branch to line 200 if X is equal to 3.

IF X=3 THEN GOTO 200
IF X=3 THEN GOTO Start
IF X=3 THEN 200

IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer assumes
a GOTO statement for that line. This improves the readability of programs.

2-4 Program Structure and Flow

~

N—

>

m

~

Multiple-Line Conditional Segments

If the conditional program segment requires more than one statement, a slightly different
structure is used. For example:

100 IF Ph>7.7 THEN

110 PRINT "The value of Ph has been exceeded!"
120 PRINT "Final Ph =";Ph

130 GOSUB Next_tube

140 END IF

160 ! Program continues here

If Ph is less than or equal to 7.7 the program skips all of the statements between the
IF..THEN and the END IF statements and continues with the line following the END IF
statement. If Ph is greater than 7.7, the computer executes the three statements between the
IF ... THEN and END IF statements. Program flow then continues at line 150. Any number
of program lines can be placed between a THEN and an END IF statement including other
IF..END IF statements. Including other IF..END IF statements is called nesting or nested
constructs. For example:

1000 IF Flag THEN
1010 IF End_of_page THEN

1020 FOR I=1 TO Skip_length
1030 PRINT

1040 Lines=Lines+1

1050 NEXT I

1060 END IF

1070 END IF

Choosing One of Two Segments

Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is shown in the following diagram:

Flag = 1 Flag = 0
' |
| 400 IF Flag THEN -_—
| 410 R=R+2 I
1420 Area=PIsR"2 I

--- 430 ELSE <==
! 440 Width=Width+1 |
I 450 Length=Length+1 I
| 460 Area=WIdth*Length |
| 470 END IF |
-=> 480 Print "Area =";Area |
| 490 ! Program continues |
v

HP Instrument BASIC has an IF ... THEN ... ELSE structure which makes the one-of-two
choice easy and readable.

Program Structure and Flow 2-5

Choosing One of Many Segments

The SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF
construct, but allows the definition of several conditional program segments. Only one
segment executes each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement, and ends when the next program line is a CASE, CASE ELSE, or
SELECT statement.

Consider for example, the processing of readings from a voltmeter. Readings have been
entered that contain a function code. These function codes identify the type of reading and
are shown in the following table:

Function Code Type of Reading
DV DC Volts
AV AC Volts
DI DC Current
Al AC Current
oM Ohms

This example shows the use of the SELECT construct. The function code is contained in the

variable Funct$. The rules about illegal statements and proper nesting are the same as those
for the IF ... THEN statement.

2000 SELECT Funct$
2010 CASE "DV"

2020 !

2030 ! Processing for DC Volts
2040 !

2050 CASE "AV"

2060 !

2070 ! Processing for AC Volts
2080 !

2090 CASE "DI"

2100 !

2110 ! Processing for DC Amps
2120 '

2130 CASE "AT"

2140 '

2150 ! Processing for AC Amps
2160 !

2170 CASE "OM"

2180 '

2190 ! Processing for Ohms
2200 '

2210 CASE ELSE

2220 BEEP

2230 PRINT "“INVALID READING"
2240 END SELECT
2250 ! Program execution continues here

Notice that the SELECT construct starts with a SELECT statement specifying the variable
to be tested and ends with-an END SELECT statement. The anticipated values are placed
in CASE statements. Although this example shows a string tested against simple literals,

2-6 Program Structure and Flow

)

the SELECT statement works for numeric or string variables or expressions. The CASE
statements can contain constants, variables, expressions, comparison operators, or a range
specification. The anticipated values, or match items, must be of the same type (numeric or
string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the
tested variable does not match any of the cases. If CASE ELSE is not included and no match
is found, program execution simply continues with the line following END SELECT.

A CASE statement can also specify multiple matches by separating them with commas, as
shown below.

CASE -1,1,3T07,>15

If an error occurs when the computer tries to evaluate an expression in a CASE statement,
the error is reported for the line containing the SELECT statement. An error message
pointing to a SELECT statement actually means that there was an error in that line or in one
of the CASE statements following it.

Repetition

There are four structures available for creating repetition. The FOR ... NEXT structure
repeats a program segment a predetermmed number of times. Two other structures,
REPEAT ... UNTIL and WHILE ... END WHILE, repeat a program segment indefinitely,
waiting for a specified condition to occur. The LOOP ... EXIT IF structure is used to create
an iterative structure that allows multiple exit points a,t a,rbitra.ry locations.

Fixed Number of Iterations

The general concept of repetitive program flow can be shown with the FOR ... NEXT
structure. The FOR statement marks the beginning of the repeated segment and establishes
the number of repetitions. The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. This variable is available for use
within the loop, if desired. The following example shows the basic elements of a FOR ...
NEXT loop.

10 FOR X=10 TO O STEP -1

20 BEEP

30 PRINT X
40 WAIT 1
50 NEXT X
60 END

In this example, X is the loop counter, 10 is the starting value, 0 is the final value, -1 is the
step size and the repeated segment is composed of lines 20 through 50. Note that if the step
counter is not specified, a default value of 1 is assumed.

When all variables involved are integers, the number of iterations can be predicted using the
following formula:

INT((Step_Size + Final_Value — Starting_Value)/(Step_Size))

Thus, the number of iterations in the example above is 11.

Program Structure and Flow 2-7

Conditional Number of Iterations

Some applications need a loop that is executed until a certain condition is true, without
specifying the number of iterations involved.

For example, suppose you want to print the value of successive powers of two, but only until
the value is greater than 1000. The REPEAT ... UNTIL is more flexible than the FOR. ...
NEXT in this case. Consider the following example program:

10 Xx=2

20 I=1

30 PRINT X;

40 REPEAT

50 X=2"(I+1)
60 I=T+1

70 PRINT X;
80 UNTIL X>1000
80 END

This program will calculate the value of each power of 2 until the value is greater than 1000.
If you ran this program, the results would be:

2 4 8 16 32 64 266 512 1024

The WHILE loop is used for the same purpose as the REPEAT loop. The only difference
between the two is the location of the test for exiting the loop. The REPEAT loop has its test
at the bottom. This means that the loop is always executed at least once, regardless of the
value of the condition. The WHILE loop has its test at the top. Therefore, it is possible for
the loop to be skipped entirely. The following shows this.

10 X=2
20 1I=1
30 PRINT X;

40 WHILE X<1000
50 X=2"(I+1)
60 I=I+1

70 PRINT X;
80 END WHILE

90 END

Arbitrary Exit Points

The looping structures discussed so far allow only one exit point. There are times when this is
not the desired program flow. The LOOP..EXIT IF construct allows you to have any number
of conditional exits points. Also, the EXIT IF statement can be at the top or bottom of the
loop. This means that the LOOP structure can serve the same purposes as REPEAT ...
UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a
given loop. This is best shown with an example. In the “WRONG?” example, the EXIT IF
statement has been nested one level deeper than the LOOP statement because it was placed
in an IF ... THEN structure.

2-8 Program Structure and Flow

»

WRONG:

(} 600 LOOP
610 Test=RND-.5
620 IF Test<0 THEN
630 GOSUB Negative
640 ELSE
650 EXIT IF Test>.4
660 GOSUB Positive
670 END IF
680 END LOOP

RIGHT:

Here is the proper structure to use.

600 LOOP

610 Test=RND-.5
620 EXIT IF Test>.4
630 IF Test<0 THEN

640 GOSUB Negative
650 ELSE

660 GOSUB Positive
670° END IF

680 END LOOP

~ Program Structure and Flow 2-9

Event-Initiated Branching

HP Instrument BASIC provides a tool called event-initiated branching, which uses interrupts
to redirect program flow. Each time the program finishes a line, the computer executes an
“event-checking” routine. If an enabled event has occurred, then this “event-checking” routine
causes the program to branch to a specified statement).

Types of Events

Event-initiated branching is established by the ON..event statements. Here is a list of the
statements:

ON ERROR an interrupt generated by a run-time error
ON INTR an interrupt generated by an an interface
ON KEY an interrupt generated by pressing a softkey

ON TIMEOUT an interrupt generated when an interface or device has taken longer than a
specified time to respond to a data-transfer handshake

The following example demonstrates an event-initiated branch using the ON KEY statement.

100 ON KEY 1 LABEL "Inc" GOSUB Plus
110 ON KEY 5 LABEL "Dec" GOSUB Minus
120 ON KEY 8 LABEL "Abort" GOTO Bye
130 !

140 Spin: DISP X

150 GOTO Spin

160 !

170 Plus: X=X+1

180 RETURN

190 !

200 Minus: X=X-1

210 RETURN

220 Bye: END

The ON KEY statements are executed only once at the start of the program. Once defined,
these event-initiated branches remain in effect for the rest of the program.

The program segment labeled “Spin” is an infinite loop. If it weren’t for interrupts, this
program couldn’t do anything except display a zero. However, there is an implied “IF ...
THEN” at the end of each program line due to the ON KEY action. As a result of softkey
presses, either the “Plus” or the “Minus” subroutines are selected or the program branches
to the END statement and terminates. If no softkey is pressed, the computer continues to
display the value of X. The following section of “pseudo-code” shows what the program flow of
the “Spin” segment actually looks like to the computer.
Spin: display X
if Keyl then gosub Plus
if Key5 then gosub Minus

if Key9 then goto Bye
goto Spin

The labels are arranged to correspond to the layout of the softkeys. The labels are displayed
when the softkeys are active and are not displayed when the softkeys are not active. Any label
which your program has not defined is blank. The label areas are defined in the ON KEY
statement by using the keyword LABEL followed by a string.

2-10 Program Structure and Flow

(M)

N—

~

Deactivating Events

All the “ON-event” statements have a corresponding “OFF-event” statement. This is one
way to deactivate an interrupt source. For example OFF KEY deactivates interrupts from the
softkeys. Pressing a softkey while deactivated does nothing.

Disabling Events

It is also possible to temporarily disable an event-initiated branch. This is done when an
active event is desired in a process, but there is a special section of the program that you
don’t want to be interrupted. Since it is impossible to predict when an external event will
occur, the special section of code can be “protected” with a DISABLE statement.

100 ON KEY 9 LABEL " ABORT" GOTO Leave

110 !
120 Print_line: !
130 DISABLE

140 FOR I=1 TO 10
150 PRINT I;
160 WAIT .3

170 NEXT I

180 PRINT

180 ENABLE

200 GOTO Print_line
210 !

220 Leave: END

This example shows a DISABLE and ENABLE statement used to “frame” the Print_line
segment of the program. The “ABORT” key is active during the entire program, but the
branch to exit the routine will not be taken until an entire line is printed. The operator can
press the “ABORT” key at any time. The key press will be logged, or remembered, by the
computer. Then when the ENABLE statement is executed, the event-initiated branch is
taken.

Chaining Programs

With HP Instrument BASIC, it is also possible to “chain” programs together; that is, one
program may be executed, which in turn loads and runs another. This method is often used
when you have several large program segments that will not all fit into memory at the same
time. This section describes program chaining methods.

Using GET

The GET command is brings in programs or program segments from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line.

The following statement:
GET "George",100

first deletes all program lines from 100 to the end of the program, and then appends the lines
in the file named “George” to the lines that remained at the beginning of the program. The
program lines in file “George” would be renumbered to start with line 100.

Program Structure and Flow 2-11

GET can also specify where program execution begins. This is done by specifying two line
identifiers. For example:

100 GET "RATES",Append_line,Run_line
specifies that:

1. Existing program lines from the line label “Append_line” to the end of the program are to
be deleted.

2. Program lines in the file named “RATES” are to be appended to the current program,
beginning at the line labeled “Append line”; lines of “RATES” are renumbered if necessary.

3. Program execution is to resume at the line labeled “Run_line”.

Although any combination of line identifiers is allowed, the line specified as the start of
execution must be in the main program segment (not in a SUB or user-defined function).
Execution will not begin if there was an error during the GET operation.

Example of Chaining with GET

A large program can be divided into smaller segments that are run separately by using GET.
The following example shows a technique for implementing this method.

First Program Segment:

10 COM Ohms,Amps,Volts
20 Ohms=120

30 Volts=240

40 Amps=Volts/Ohms

60 GET "Wattage"

60 END

Program Segment in File Named “Wattage”:

10 COM Ohms,Amps,Volts

20 Watts=Amps*Voltis

30 PRINT "Resistance (in ohms) = ";0hms
40 PRINT "Power usage (in watts) = ";Watts
50 END

Lines 10 through 40 of the first program are executed in normal, serial fashion. Upon reaching
line 50, the system deletes all program lines of the program and then GET's the lines of the
“Wattage” program. Note that since they have similar COM declarations, the COM variables
are preserved (and used by the second program). This feature is very handy to have while
chaining programs.

Program-to-Program Communications

As shown in the preceding example, if chained programs are to communicate with one
another, you can place values to be communicated in COM variables. The only restriction
is that these COM declarations must match ezactly, or the existing COM will be cleared
when the chained program is loaded. For a description of using COM declarations, see the
“Subprograms” chapter of this manual.

One important point to note is the use of the COM statement. The COM statement places
variables in a section of memory that is preserved during the GET operation. Since the
program saved in the file named “Wattage” also has a COM statement that contains three

2-12 Program Structure and Flow

®

scalar REAL variables, the COM is preserved (it matches the COM declaration of the
“Wattage” program being appended with GET).

If the program segments did not contain matching COM declarations, all variables in the
mis-matched COM statements would be destroyed by the “pre-run” that the system performs
after appending the new lines but before running the first program line.

Program Structure and Flow 2-13

3

Numeric Computation

Numeric computations deal exclusively with numeric values. Adding two numbers and finding
a sine or a logarithm are all numeric operations, but converting bases and converting a
number to a string or a string to a number are not.

Numeric Data Types

There are two numeric data types available in HP Instrument BASIC: INTEGER, and REAL.
Any numeric variable not declared INTEGER is a REAL variable. This section covers these
data types.

INTEGER Data Type
An INTEGER variable can have any whole-number value from —32 768 through +32 767.

REAL Data Type

A REAL variable can be any value from —1.797 693 134 862 315 x 103%8 through 1.797 693
134 862 315 x 103%8. The smallest non-zero REAL value allowed is approximately + 2.225
073 858 507 202 x 10738,

A REAL can also have the value of zero.
REAL and INTEGER variables may be declared as arrays.

Declaring Variables

You can declare variables to be of a particular type by using the INTEGER and REAL
statements. For example, the statements:

INTEGER I, J, Days(5), Weeks(5:17)
REAL X, Y, Voltage(4), Hours(5,8:13)

each declare two scalar and two array variables. A scalar variable represents a single value.
An array is a subscripted variable that contains multiple values accessed by subscripts. You
can specify both the lower and upper bounds of an array or specify the upper bound only, and
use the default lower bound of 0. You can also declare an array using the DIM statement.

DIM R(4,5)

Numeric Computation 3-1

Assigning Variables

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement may be used with or without the keyword LET. Thus the
following statements are equivalent:

LET A = A + 1
A=4A+1

Implicit Type Conversions

The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are passed by value in function and subprogram calls. When
a value is assigned to a variable, the value is converted to the data type of that variable.

For example, the following program shows a REAL value being converted to an INTEGER:

100 REAL Real_var

110 INTEGER Integer_var

120 Real_var = 2.34

130 Integer_var = Real_var ! Type conversion occurs here.
140 DISP Real_var, Integer_var

150 END

Executing this program returns the following result:
2.34 2

When parameters are passed by value, the type conversion is from the data type of the calling
statement’s parameter to the data type of the subprogram’s parameter. When parameters are
passed by reference, the type conversion is not made and a TYPE MISMATCH error will be
reported if the calling parameter and the subprogram parameters are different types.

When a REAL number is converted to an INTEGER, the fractional part is lost and the
REAL number is rounded to the closest INTEGER value. Converting the number back to a
REAL will not restore the fractional part. Also, because of the differences in ranges between
these two data types, not all REAL values can be rounded into an equivalent INTEGER
value. This problem can generate INTEGER OVERFLOW errors.

The rounding problem does not generate an execution error. The range problem can generate
an execution error, and you should protect yourself from this possibility.

The following program segment shows a method to protect against INTEGER overflow errors
(note that the variable X is REAL):

200 IF (-32768<=X) AND (X<=32767) THEN
210 Y=X

220 ELSE

230 GOSUB Out_of_range

240 END IF

It is possible to achieve the same effect using MAX and MIN functions:
200 Y=MAX(MIN(x,32767),-32768)

.Both these methods avoid the overflow errors, but only the first does not lose the fact that
the values were originally out of range. If out-of-range is a meaningful condition, an error
handling trap is more appropriate.

3-2 Numeric Computation

~

Evaluating Scalar Expressions
This section covers the following topics as they relate to evaluating scalar expressions.
u Hierarchy of expression evaluation

s HP Instrument BASIC operators: monadic, dyadic, and relational

The Hierarchy

If you look at the expression 24+4/2+86, it can be interpreted several ways:
w 2+(4/2)+6 = 10

® (2+4)/246 =9

m 2+4/(246) = 2.5

m (2+4)/(246) = .75

To eliminate this ambiguity HP Instrument BASIC uses a hierarchy for evaluating expressions.
In order to understand how HP Instrument BASIC evaluates these expressions, let’s examine
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements).

Six items can appear in a numeric expression:

m Operators (+, —, etc.)—modify other elements of the expression.

m Constants (7.5, 10, etc.)—represent literal, non-changing numeric values.
m Variables (Amount, X_coord, etc.)—represent changeable numeric values.

m Intrinsic functions (SQRT, DIV, etc.)—return a value which replaces them in the evaluation
of the expression.

m User-defined functions (FNMy func, FNReturn_val, etc.)—also return a value which replaces
them in the evaluation of the expression.

m Parentheses—are used to modify the evaluation hierarchy.

The following table defines the hierarchy used by the computer in evaluating numeric
expressions.

Numeric Computation 3-3

Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation
Functions, both user-defined and intrinsic

Exponentiation: ~

Multiplication and division: * / MOD DIV MODULO
Addition, subtraction, monadic plus and minus: + —
Relational Operators: = <> < > <= >=

NOT

AND

Lowest OR, EXOR

When an expression is being evaluated it is read from left to right and operations are
performed as encountered, unless a higher precedence operation is found immediately to
the right of the operation encountered, or unless the hierarchy is modified by parentheses.
If HP Instrument BASIC cannot deal immediately with the operation, it is stacked, and the
evaluator continues to read until it encounters an operation it can perform. It is easier to
understand if you see an example of how an expression is actually evaluated.

The following expression is complex enough to demonstrate most of what goes on in
expression evaluation.

A = 5+3%(4+2) /SIN(X) +X* (1>X) +FNNeg1* (X<5 AND X>0)

In order to evaluate this expression, it is necessary to have some historical data. We will
assume that DEG has been executed, that X= 90, and that FNNeg1 returns -1. Evaluation
proceeds as follows:

3-4 Numeric Computation

5+3%(4+2) /SIN(X)+X*(1>X)+FNNeg1#(X<6 AND X>0)
5+3%6/SIN(X)+X*(1>X)+FNNeg1#(X<6 AND X>0)
5+18/SIN(X)+X*(1>X)+FNNeg1*(X<6 AND X>0)
5+18/1+4X*(1>X)+FlNNeg1*(X<5 AND X>0)
5+18+X#* (1>X) +FNNeg1#(X<5 AND X>0)
23+X*(1>X)+FNNeg1* (X<5 AND X>0)
23+X*0+FNNeg1#(X<5 AND X>0)
23+0+FNNeg1*(X<5 AND X>0)

23+FNNeg1#(X<5 AND X>0)

23+-1*(X<5 AND X>0)

23+-1%(0 AND X>0)

23+-1%(0 AND 1)

23+-1%0

23+0

23

Operators
There are three types of operators in HP Instrument BASIC: monadic, dyadic, and relational.

® A monadic operator performs its operation on the expression immediately to its right. + -
NOT

m A dyadic operator performs its operation on the two values it is between. The operators are
as follows: =, *, /, MOD, DIV, +, -, =, <>, <, >, <=, >=, AND, OR, and EXOR.

m A relational operator returns a 1 (true) or a 0 (false) based on the result of a relational test
of the operands it separates. The relational operators are a subset of the dyadic operators
that are considered to produce boolean results. These operators are as follows: <, >, <=,
>=, =, and <.

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side-effects that are not always apparent.
Expressions as Pass Parameters

All numeric expressions are passed by value to subprograms. Thus 54X is obviously passed by
value. Not quite so obviously, +X is also passed by value. The monadic operator makes it an
expression.

For more information on pass parameters, read the chapter entitled “Subprograms and
User-Defined Functions.”

Numeric Computation 3-5

Strings in Numeric Expressions

String expressions can be directly included in numeric expressions if they are separated by
relational operators. The relational operators always yield boolean results, and boolean results
are numeric values in HP Instrument BASIC. For example:

110 Day_number=1%(Day$="Sun")+2%(Day$="Mon")

Executing the program line above would result in Day_number being equal to 1 if Day$ equals
“Sun” and 2 if Day$ equals "Mon" (or 0 otherwise).

Step Functions

The comparison operators are useful for conditional branching (IF ... THEN statements), but
are also valuable for creating numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the value, or range of values. of a
single variable. This is shown as follows:

m If variable < 0 then output =0
m If 0 < variable < 1 then output equals the square root of (A2 *+ B2),
m If variable > 1 then output = 15

It is possible to generate the required response through a series of IF ... THEN statements,
but it can also be done with the following expression (where X is the variable and Y is the
output):

Y=(X<0)#0+(X>=0 AND X<1)#* SQR(A~2+B"2)+(X>=1)#15

The boolean expressions each return a 1 or 0 which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the
result. The value assigned to the variable (X) before the expression is evaluated determines
the computation placed in the result.

Comparing REAL Numbers

When you compare INTEGER numbers, no special precautions are necessary since these
values are represented exactly. However, when you compare REAL numbers, especially those
which are the results of calculations and functions, it is possible to run into problems due to
rounding. For example, consider the use of comparison operators in IF ... THEN statements
to check for equality in any situation resembling the following:

100 DEG

110 A=25,3765477

120 IF SIN(A)"2+C0S(A)"~2=1.0 THEN
130 PRINT "Equal®

140 ELSE
150 PRINT "Not Equal
160 END IF

You will find that the equality test fails due to rounding errors. Irrational numbers and most
repeating decimals cannot be represented exactly in any finite machine; and most rational
decimal numbers with fractional parts cannot be represented exactly with binary numbers,
which HP Instrument BASIC uses internally.

3-6 Numeric Computation

~

N—

Y

Resident Numerical Functions

The resident functions are the functions that are part of the HP Instrument BASIC language.
Numerous functions are included to make mathematical operations easier. This section covers
these functions by placing them in the categories given below.

m Arithmetic Functions

m Exponential Functions

m Trigonometric Functions

m Binary Functions

s Limit Functions

s Rounding Functions

m Random Number Function

m Base Conversion Functions

m General Functions

Arithmetic Functions

HP Instrument BASIC provides you with the following functions:

ABS

FRACT

INT
MAXREAL
MINREAL
SQRT or SQR

SGN

Returns the absolute value of an expression. Takes a REAL, or INTEGER
number as its argument.

Returns the “fractional” part of the argument.

Returns the greatest integer that is less than or equal to an expression.
The result is of the same type (INTEGER or REAL) as the original
number.

Returns the largest positive REAL number available in HP Instrument
BASIC. Its value is approximately 1.797 693 134 862 32E+308.

Returns the smallest positive REAL number available in HP Instrument
BASIC. Its value is approximately 2.225 073 858 507 24E~-308.

Return the square root of an expression. Takes a REAL or INTEGER
number as their argument.

Returns the sign of an expression: 1 if positive, 0 if 0, —1 if negative.

Exponential Functions

These functions determine the natural and common logarithm of an expression, as well as the
Napierian e raised to the power of an expression. Note that all exponential functions take
REAL, or INTEGER numbers as their argument.

EXP
LGT
LOG

Raise the Napierian e to an power. e = 2.718 281 828 459 05.
Returns the base 10 logarithm of an expression.

Returns the natural logarithm (Napierian base e) of an expression.

Numeric Computation 3-7

Trigonometric Functions

Six trigonometric functions and the constant 7 are provided for dealing with angles and
angular measure. Note that all trigonometric functions take REAL or INTEGER numbers as
their argument.

ACS Returns the arccosine of an expression.

ASN Returns the arcsine of an expression.

ATN Returns the arctangent of an expression.

cos Returns the cosine of the angle represented by the expression.

SIN Returns the sine of the angle represented by an expression.

TAN Returns the tangent of the angle represented by an expression.

PI Returns the constant 3.141 592 653 589 79, an approximate value for pi.

Trigonometric Modes: Degrees and Radians

The default mode for all angular measure is radians. Degrees can be selected with the DEG
statement. Radians may be re-selected by the RAD statement. It is a good idea to explicitly
set a mode for any angular calculations, even if you are using the default (radian) mode. This
is especially important in writing subprograms, as the subprogram inherits the angular mode
from the context that calls it. The angle mode is part of the calling context.

Binary Functions

All operations that HP Instrument BASIC performs use a binary number representation. You
usually don’t see this, because HP Instrument BASIC changes decimal numbers you input
into its own binary representation, performs operations using these binary numbers, and then
changes them back to their decimal representation before displaying or printing them.

The following HP Instrument BASIC functions deal with binary numbers:
BINAND Returns the bit-by-bit “logical and” of two arguments.
BINCMP Returns the bit-by-bit “complement” of its argument.
BINEOR Returns the bit-by-bit “exclusive or” of two arguments.
BINIOR Returns the bit-by-bit “inclusive or” of two arguments.
BIT Returns the state of a specified bit of the argument.

ROTATE Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, with wraparound.

SHIFT Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, without wraparound.

When any of these functions are used, the arguments are first converted to INTEGER (if they
are not already in the correct form) and then the specified operation is performed. It is best
to restrict bit-oriented binary operations to declared INTEGERs. If it is necessary to operate
on a REAL, make sure the precautions described under “Conversions,” at the beginning of
this chapter, are employed to avoid INTEGER overflow.

3-8 Numeric Computation

Limit Functions

It is sometimes necessary to limit the range of values of a variable. HP Instrument BASIC
provides two functions for this purpose:

MAX Returns a value equal to the greatest value in the list of arguments.

MIN Returns a value equal to the least value in the list of arguments.

Rounding Functions

Sometimes it is necessary to round a number in a calculation to eliminate unwanted
resolution. There are two basic types of rounding, rounding to a total number of decimal
digits and rounding to a number of decimal places (limiting fractional information). Both
types of rounding have their own application in programming.

The functions which perform the types of rounding mentioned above are as follows:

DROUND Rounds a numeric expression to the specified number of digits. If the
specified number of digits is greater than 15, no rounding takes place. If
the number of digits specified is less than 1, zero is returned.

PROUND Returns the value of the argument rounded to a specified power of ten.

Random Number Function

The RND function returns a pseudo-random number between 0 and 1. Since many
applications require random numbers with arbitrary ranges, it is necessary to scale the
numbers.

200 R= INT(RND*Range)+0ffset
The above statement will return an integer between Offset and Offset + Range.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and prerun. The pattern period is 23! — 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Time and Date Functions
The following functions return the time and date in seconds:
TIMEDATE Returns the current clock value (in Julian seconds).

(If there is no battery-backed clock, the clock value set at power-on is 2.086 629 12E+11,
which represents midnight March 1, 1900.

For example, the statement
TIMEDATE
returns a value in seconds similar to the following:

2.11404868285E+11

Numeric Computation 3-9

Base Conversion Functions

The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number.

IVAL returns the INTEGER value of a binary, octal, decimal, or hexadecimal 16-bit
integer. The first argument is a string and the second argument is the radix or base
to convert from. For example, executing this statement

IVAL("12740",8)
returns the following numeric value:
5600

DVAL returns the decimal whole number value of a binary, octal, decimal, or hexadecimal
32-bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example, executing this statement

DVAL("11111111111111111111111111111100",2)
returns the following numeric value:
-4

For more information and examples of these functions, read the section “Number-Base
Conversion” found in the “String Manipulation” chapter.

General Functions

When you are specifying select code and device selector numbers, it is more descriptive to use
a function to represent that device as opposed to a numeric value. For example, the following
command allows you to enter a numeric value from the keyboard.

ENTER 2;Numeric_value

The above statement used in a program is not as easy to read as this one is:
ENTER KBD; Numeric_value

where you know the function KBD must stand for keyboard.

Functions which return a select code or device selector are listed below:

CRT Returns the INTEGER 1. This is the select code of the internal CRT.
KBD Returns the INTEGER 2. This is the select code of the keyboard.
PRT Returns the INTEGER 701. This is the default (factory set) device selector

for an external printer (connected through the built-in HP-IB interface at
select code 7).

3-10 Numeric Computation

~

SN—

4

Numeric Arrays

An array is a multi-dimensioned structure of variables that are given a common name. The
array can have one through six dimensions. Each location in an array can contain one variable
value, and each value has the characteristics of a single variable, depending on whether the
array consists of REAL, or INTEGER values (string arrays are discussed in the chapter,
“String Manipulation.”)

A one-dimensional array consists of n elements, each identified by a single subscript. A
two-dimensional array consists of m times n elements where m and n are the maximum number
of elements in the two respective dimensions. Arrays require a subscript in each dimension,
in order to locate a given element of the array. Up to six dimensions can be specified for

any array in a program. REAL arrays require eight bytes of memory for each element, plus
overhead memory for each element, plus overhead. It is easy to see that large arrays can
demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Dimensioning an Array

Before you use an array, you should tell the system how much memory to reserve for it. This
is called dimensioning an array. You can dimension arrays with the DIM, COM, INTEGER, or
REAL statements. For example:

REAL Array_real(2,4)

An array is a type of variable and as such follows all rules for variable names. Unless you
explicitly specify INTEGER type in the dimensioning statement, arrays default to REAL
type. The same array can only be dimensioned once in a context.

Dimensioning reserves space in internal memory for the array. The system also sets up a table
used to locate each element in the array. The location of each element is designated by a
unique combination of subscripts, one subscript for each dimension. For a two-dimensional
array, for instance, each element is identified by two subscript values. An example of declaring
a two-dimensional array is:

DIM Array(3,5)

This statement dimensions a 4 X 6 array, with the first subscript representing four rows
(0,1,2,3) and the second subscript representing six columns (0,1,2,3,4,5). The locations of each
element is designated by a unique combination of subscripts, one subscript for each dimension.

Numeric Arrays 4-1

The actual size of an array is governed by the number of dimensions and the subscript range
of each dimension. If A is a three-dimensional array with a subscript range of 1 through 4 for
each dimension,

DIM A(1:4,1:4,1:4)

then its size is 4x4x4, 64 elements. Note that 1 on the left side of the colon in the dimension
statement above is the lower bound and 4 on the right is the upper bound.

When you dimension an array, therefore, you must give not only the number of dimensions
but also the subscript range of each dimension. Subscript ranges can be specified by giving
the lower and upper bounds, as shown above, or by giving just the upper bound. If you give
only the upper bound, the lower bound defaults to 0.

Some Examples of Arrays

The following examples illustrate some of the flexibility you have in dimensioning arrays.
10 DIM A(1:3,1:4,2)

2|19 N .10 [N @10 [N

2 (1.1.1) 1, (3.1.1)
[S I o G B o S B
? \0’2_1) \ % (2,2.1) \ & (3.2.1) \
\\ (2,2,2) \\ (3,2,2)
Y (2,4,0) &0 \ (3.4,0) Y \
\ (2,3.2) \ (3.3,2)
\(2,4.1) \ \ (3,4,1) \
(2,4,2) (3.4.2)

\

-

1st DIMENSION

Planes of a Three-Dimensional REAL Array

Dimension Size Lower Bound Upper Bound
1st 3 1 3
2nd 4 1 4
3rd 3 0 2

In this example we portray the first dimension as planes, the second dimension as rows, and
the third dimension as columns. In general, the last two dimensions of any array always

refer to rows and columns, respectively. When we discuss two-dimensional arrays, the first
dimension will always represent rows, and the second dimension will always represent columns.

4-2 Numeric Arrays

Note also in the above example that the first two dimensions use the default setting of 1

v for the lower bound, while the third dimension explicitly defines 0 as the lower bound. The
numbers in parentheses are the subscript values for the particular elements. These are the
numbers you use to identify each array element.

20 INTEGER C(2:4,-2:2)

A Two-Dimensional INTEGER Array

(2!'2) (2"1) (210) (2’1) (2!2)

(3:-2) (3-1) (3,0) (3.1) (3,2)
(4-2) (4-1) (4,0) (4.1) 4,2)
Dimension | Size | Lower Bound | Upper Bound
1st 3 2 4

2nd 5 -2 2

30 COM INTEGER F(1,4,-1:2)

Y

~ RN
\ | (1,0,0)
mJ-U"folT;::T \\\\\\\\\\::;;\

\\\\\wJp)\\;\\ UJ@)\\\\\
: \\\\\

=
o
o

—
o
o
N
N
—~
~

~~
—
—_
|
-
Nat

(qu)\\\\\(010 ::;:? (1,1,1)
(0,2,1) ' (1,2.1) \

N 1,3,1
\\\\\(amm \\\\\:;;;? \\\\\(me \\\\\7:;;>
\(0,4,1) \ \ (1.4.1) \
\\\\\<04m \\\\\(Ltﬁ

/
/

U A Three-Dimensional INTEGER Array, in Common

Numeric Arrays 4-3

Dimension Size Lower Bound Upper Bound
st 2 0 1
2nd 5 0 4
3rd 4 -1 2

Arrays are limited to six dimensions, and the subscript range for each dimension must lie
between -32767 and 32767. For the most part, we use only two-dimensional examples since
they are easier to illustrate. However, the same principles apply to arrays of more than two
dimensions as well.

Note Unless explicitly specified otherwise, HP Instrument BASIC uses the base of 0
for arrays.

As an example of a four-dimensional array, consider a five-story library. On each floor there
are 20 stacks, each stack contains 10 shelves, and each shelf holds 100 books. To specify the
location of a particular book you would give the number of the floor, the stack, the shelf,
and the particular book on that shelf. We could dimension an array for the library with the
statement:

DIM Library(1:5,1:20,1:10,1:100)

This means that there are 100,000 book locations. To identify a particular book you would
specify its subscripts. For instance, Library(2,12,3,35) would identify the 35th book on the
3rd shelf of the 12th stack on the 2nd floor.

You can imagine accessing a particular page of a book by using a 5-dimensional array. For
instance, if you dimension an array,

DIM Page(1:5,1:20,1:10,1:100,1:200)

then Page(1,7,2,19,130) would designate page 130 of the 19th book on the 2nd shelf of the
7th stack on the 1st floor.

You could specify words on pages by using a 6-dimensional array. Six dimensions is the
maximum, though, so we could not specify letters of words.

Also, you can dimension more than one array in a single statement by separating the
declarations with a comma. For instance,

10 DIM A(1,3,4),B(-2:0,2:5),C(5)

would dimension all three arrays: A, B, and C.

Problems with Implicit Dimensioning

In any environment, an array must have a dimensioned size. This size can be passed into
an environment through a passed parameter list or a COM statement. It may be explicitly
dimensioned through COM, INTEGER, or REAL. It can also be implicitly dimensioned
through a subscripted reference in a program statement.

4-4 Numeric Arrays

Finding Out the Dimensions of an Array

There are a number of statements that allow you to determine the size and shape of an array.
To find out how many dimensions are in an array, use the RANK function. For instance:

10 DIM F(1,4,-1:2)
20 PRINT RANK (F)

would print 3.

The SIZE function returns the size (number of elements) of a particular dimension. For
instance,

SIZE (F,2)
would return 5, the number of elements in F’s second dimension.

To find out what the lower bound of a dimension is, use the BASE function. Referring again to
array F,

BASE (F,1)

would return a 0, while,
BASE (F,3)

would return a -1.

By using the SIZE and BASE functions together, you can determine the upper bounds of any
dimension (e.g., Upper Bound=SIZE+BASE-1).

It may seem pointless to have all these functions that return the dimension specifications
which you yourself assigned. After all, if you assigned the dimensions, you should know what
they are; and if you forget, you can always look at the appropriate dimensioning statement.
However, these functions are powerful tools for writing programs that perform functions on an
array regardless of the array’s size or shape.

Using Individual Array Elements

This section deals with assigning and extracting individual elements from arrays.

Assigning an Individual Array Element

Once an array has been dimensioned, the next step is to fill it with useful values. Initially,
every element in an array equals zero. There are a number of different ways to change these
values. The most obvious is to assign a particular value to each element. This is done by
specifying the element’s subscripts. For example, the statement,

A(3,4)=13

assigns the value 13 to the element in the third row and fourth column of A. You must give
enough subscripts for the system to identify a single element. All subscripts must lie within
the dimensioned range. If you use out-of-range subscripts, the system returns an error.

Numeric Arrays 4-5

Extracting Single Values From Arrays

There are a number of ways to extract values from array elements. To extract the value of a
particular element, simply specify the element’s subscripts. For instance, the statement,

X=A(3,4,2)

assigns the value of the element occupying the given location in A to the variable X. The
system will automatically convert variable types. For example, if you assign an element from a
REAL array to an INTEGER variable, the system will perform the necessary rounding.

Filling Arrays

Using the READ Statement to Fill an Entire Array

You can assign values to an array by using the READ and DATA statements. The DATA
statement allows you to create a stream of data items, and the READ statement enables you
to enter the data stream into an array. For example:

10 DIM A(3,3)

20 DATA -4,36,2.3,5,89,17,-6,-12,42

30 READ A(#)

40 PRINT USING "3(3DD.DD,3DD.DD,3DD.DD,/)";A(*)
50 END

The asterisk in line 40 is used to designate the entire array rather than a single element. Note
also that the right-most subscript varies fastest. In this case, it means that the system fills an
entire row before going to the next one. The READ/DATA statements are discussed further
in the chapter “Data Storage and Retrieval”.

Executing the above program produces the following results:

-4.00 36.00 2.30
5.00 89.00 17.00
-6.00 -12.00 42.00

Printing Arrays

Once an array has been filled with values, it is nice to know what those values are. The best
way to do this is to display them on the screen or printer. This section provides information
on how to perform this task for REAL and INTEGER values.

4-6 Numeric Arrays

™

i

Printing an Entire Array

Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all
elements of an array merely by using an asterisk in place of the subscript list. The statement,

PRINT A(*);

displays every element of A on the current PRINTER IS device. The elements are displayed
in order, with the rightmost subscripts varying fastest. The semi-colon at the end of the
statement is equivalent to putting a semi-colon between each element. When they are
displayed, therefore, they will be separated by a space. The default is to place elements in
successive columns.

Passing Entire Arrays

The asterisk is also used to pass an array as a parameter to a function or subprogram. For
instance, to pass an array A to the Printmat subprogram listed earlier, you would write:

Printmat (A(*))

Numeric Arrays 4-7

»

<

String Manipulation

It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in
a string. Quotation marks delimit the beginning and ending of the string. The following are
valid string assignments.

LET A$="COMPUTER"
Fail$="The test has failed."
File_name$="INVENTORY"
Test$=Fail$[5,8]

The left-hand side of the assignment (the variable name) is equated to the right-hand side of
the assignment (the literal). String variable names are identical to numeric variable names
with the exception of a dollar sign ($) appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the
length of A$ is 8 since there are eight characters in the literal “COMPUTER”. A string with
length O (i.e., that contains no characters) is known as a null string.

HP Instrument BASIC allows the dimensioned length of a string to range from 1 to 32 767
characters. The current length (number of characters in the string) ranges from zero to the
dimensioned length.

The default dimensioned length of a string is 18 characters. The DIM and COM statements
define string lengths up to the maximum length of 32 767 characters. An error results
whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to
be in a string. Two quotes, in succession, will embed a quote within a string.

10 Quote$="The time is ""NOW"".*
20 PRINT Quote$
30 END

Produces: The time is "NOW".

String Manipulation 5-1

String Storage (M)

Strings whose length exceeds the default length of 18 characters must have space reserved ~
before assignment. The following statements may be used.

DIM Long$[400] Reserve space for a 400 character string.

COM Line$[80] Reserve an 80 character common variable.

The DIM statement reserves storage for strings.
DIM Part_number$[10] ,Description$[64],Cost$[5]

The COM statement defines common variables that can be used by subprograms.
COM Name$ [40] ,Phone$ [14]

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example:
DIM File$(1:1000) [80]

reserves storage for 1000 lines of 80 characters per line. Do not confuse the brackets, which
define the length of the string, with the parentheses which define the number of strings in the
array. Each string in the array can be accessed by an index. For example: m

PRINT File$(27)

prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays
can quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

Evaluating Expressions Containing Strings
This section covers the following topics:

s Evaluation Hierarchy

u String Concatenation

m Relational Operations

5-2 String Manipulation

Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The
three allowed operations are extracting a substring, concatenation, and parenthesization. The
evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses

— Substrings and Functions

Low Concatenation

String Concatenation

Two separate strings are joined together by using the concatenation operator “&”. The
following program combines two strings into one.

10 One$="WRIST"

20 Two$="WATCH"

30 Concat$=0ne$&Two$

40 PRINT One$,Two$,Concat$
50 END

Prints:
WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first
string. The result is assigned to a third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length of the string being assigned.

Relational Operations

Most of the relational operators used for numeric expression evaluation can also be used for
the evaluation of strings.

The following examples show some of the possible tests.

"ABC" = "ABC" True
"ABC" = " ABC" False
"ABC" < "AbC" True
nen > nyn False
n2n < " False
"long" <= "longer" True
"RE-SAVE" >= "RESAVE" False

Any of these relational operators may be used: <, >, <=, >=, =, <>.

Testing begins with the first character in the string and proceeds, character by character, until
the relationship has been determined.

The outcome of a relational test is based on the characters in the strings not on the length of
the strings. For example:

"BRONTOSAURUS" < "CAT"

String Manipulation 5-3

This relationship is true since the letter “C” is higher in ASCII value than the letter “B”.

Substrings

You can append a subscript to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For instance:

String$[4]

Specifies a substring starting with the fourth character of the original string. The subscript
must be in the range: 1 to the current length of the string plus 1. Note that the brackets
now indicate the substring’s starting position instead of the total length of the string as
when reserving storage for a string. Subscripted strings may appear on either side of the
assignment.

Single-Subscript Substrings

When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character
of the substring within the string.

The following examples use the variable A$ which has been assigned the literal
“DICTIONARY™.

Statement Output
PRINT A$ DICTIONARY
PRINT A$[0] (error)
PRINT A$[1] DICTIONARY
PRINT A$[5] IONARY
PRINT A$[10] Y

PRINT A$[11] (null string)
PRINT A$[12] (error)

When you use a single subscript it specifies the starting character position, within the string,
of the substring. An error results when the subscript evaluates to zero or greater than the
current length of the string plus 1. A subscript that evaluates to 1 plus the length of the
string returns the null string ("") but does not produce an error.

5-4 String Manipulation

Double-Subscript Substrings

A substring may have two subscripts, within brackets, to specify a range of characters. When
a comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring,.
The form is: A$[Start,End]. For example, if A$ = “JABBERWOCKY”, then

A$[4,6] Specifies the substring: BER

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The

form is: A$[Start;Length].

A$[4;6] Specifies the substring: BERWOC

In the following examples the variable B$ has been assigned the literal

“ENLIGHTENMENT”:
Statement Output
PRINT B$ ENLIGHTENMENT
PRINT B$[1,13] ENLIGHTENMENT
PRINT B$[1;13] ENLIGHTENMENT
PRINT B$[1,9] ENLIGHTEN
PRINT B$[1;9] ENLIGHTEN
PRINT B$[3,7] LIGHT
PRINT B$[3;7] LIGHTEN
PRINT B$[13,13] |N
PRINT B$[13;1] N
PRINT B$(13,26] |(error)
PRINT B$[13;13] | (error)
PRINT B$(14;1] | (null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater

than the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

String Manipulation 5-5

Special Considerations
All substring operations allow a subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatenation operator. For instance:

10 A$=""CONCAT"

20 A$[7]="ENATION"
30 PRINT A$

40 END

Produces: CONCATENATION

The substring assignment is only valid if the substring already has characters up to the

specified position. Access beyond the first position past the end of a string results in the error:

ERROR 18 String ovfl. or substring err

Its a good practice to dimension all strings including those shorter than the default length of
eighteen characters.

String-Related Functions

Several intrinsic functions are available in HP Instrument BASIC for the manipulation of
strings. These functions include conversions between string and numeric values.

Current String Length

The “length” of a string is the number of characters in the string. The LEN function returns
an integer whose value is equal to the string length. The range is from 0 (null string) through
32 767. For example:

PRINT LEN("HELP ME")
Prints: 7

Substring Position

The “position” of a substring within a string is determined by the POS function. The
function returns the value of the starting position of the substring or zero if the entire
substring was not found. For instance:

PRINT POS("DISAPPEARANCE","APPEAR")
Prints: 4

Note that POS returns the first occurrence of a substring within a string. By adding
a subscript, and indexing through the string, the POS function can be used to find all
occurrences of a substring.

§-6 String Manipulation

)

e

String-to-Numeric Conversion

The VAL function converts a string expression into a numeric value. The number will be
converted to and from scientific notation when necessary. For example:

PRINT VAL("123,4E3")
Prints: 123400

The string must evaluate to a valid number or error 32 will result.

ERROR 32 String is not a valid number

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example:

PRINT NUM("A")
Prints: 65

Numeric-to-String Conversion

The VALS$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example:

PRINT 1000000,VAL$ (1000000)
Prints: 1.E+6 1.E+6

The CHRS$ function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example:

PRINT CHR$(97) ; CHR$(98) ; CHR$(99)

Prints: abc

String Functions

This section covers string functions which perform the following tasks:
m Reversing the characters in a string,

m Repeating a string a given number of times,

m Trimming the leading and trailing blanks in a string,

" m Converting string characters to the desired case.

String Manipulation 5-7

String Reverse

The REVS$ function returns a string created by reversing the sequence of characters in the
given string,

PRINT REV$("Snack cans")

Prints: snac kcan$

String Repeat

The RPT$ function returns a string created by repeating the specified string, a given number
of times.

PRINT RPT$("* *",10)

Prints: % %ok sok ok skok ko skok ko kk Kk ok

Trimming a String

The TRIMS function returns a string with all leading and trailing blanks (ASCII spaces)
removed.

PRINT "x";TRIM(" 1.23 "y tan
Prints: *1.23x

Case Conversion

The case conversion functions, UPC$ and LWCS, return strings with all characters converted
to the proper case. UPC$ converts all lowercase characters to their corresponding uppercase
characters and LWCS$ converts any uppercase characters to their corresponding lowercase
characters.

10 DIM Word$[160]

20 INPUT “Enter a few characters",Word$
30 PRINT

40 PRINT "You typed: ";Word$

50 PRINT "Uppercase: ";UPC$(Word$)

60 PRINT "Lowercase: ";LWC$(Words)

70 END

5-8 String Manipulation

~

Number-Base Conversion

Utility functions are available to simplify the calculations between different number bases.
The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVAL$ and DVAL$ functions convert a decimal number
into a binary, octal, decimal, or hexadecimal string value. The IVAL and IVAL$ functions
are restricted to the range of INTEGER. variables (-32 768 through 32 767). The DVAL
and DVALS functions allow “double length” integers and thus allow larger numbers to be
converted (-2 147 483 648 through 2 147 483 647).

Each function has two parameters: the number or string to be converted and the radix.
The radix is limited to the values 2, 8, 10 and 16, and represents the numeric base of the
conversion.

The following statements show valid usage of these functions:

PRINT DVAL("FF5900",16)
PRINT IVAL("AA",16")
PRINT DVAL$(100,8)
PRINT IVAL$(-1,16)

String Manipulation 5-9

Subprograms and
User-Defined Functions

#

One of the most powerful constructs available in any language is the subprogram. A
subprogram can do everything a main program can do except that it must be invoked or
“called” before it is executed, whereas a main program is executed by an operator. This
chapter describes the benefits of using subprograms, and shows many of the details of using
them.

A user-defined function is simply a special form of subprogram.

Benefits of Subprograms

A subprogram has its own “context” or state that is distinct from a main program and all
other subprograms. This means that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line labels. There are several benefits to
be realized by taking advantage of subprograms:

m The subprogram allows the programmer to take advantage of the top-down design method
of programming.

m The program is much easier to read using the subprogram calls.

m By using subprograms and testing each one independently of the others, it is easier to locate
and fix problems.

® You may want to perform the same task from several different areas of your program.

m Libraries of commonly used subprograms can be assembled for widespread use.

A Closer Look at Subprograms

This section shows a few of the details of using subprograms.

Calling and Executing a Subprogram

A SUB subprogram is invoked explicitly using the CALL statement. A nuance of SUB
subprograms is that the CALL keyword is optional when invoking a SUB subprogram.

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will
prefer its inclusion. There are, however, three instances which require the use of CALL when
invoking a subprogram:

Subprograms and 6-1
User-Defined Functions

CALL is required:

1. If the subprogram is called from the keyboard,

2. If the subprogram is called after the THEN keyword in an IF statement, or
3. In an ON..event..CALL statement.

Differences Between Subprograms and Subroutines
A subroutine and a subprogram are very different in HP Instrument BASIC.

® The GOSUB statement transfers program execution to a subroutine. A subroutine is a
segment of program lines within the current context. No parameters need to be passed, since
it has access to all variables in the context (which is also the context in which the “calling”
segment exists).

m The CALL statement transfers program execution to a subprogram, which is in a separate
contezt. Subprograms can have pass parameters, and they can have their own set of local
variables which are separate from all variables in all other contexts.

Subprogram Location

A subprogram is located after the body of the main program, following the main program’s
END statement. (The END statement must be the last statement in the main program
except for comments.) Subprograms may not be nested within other subprograms, but are
physically delimited from each other with their heading statements (SUB or DEF) and ending
statements (SUBEND or FNEND).

Subprogram and User-Defined Function Names

A subprogram has a name which may be up to 15 characters long, just as with line labels and
variable names. Here are some legal subprogram names:

Initialize

Read_dwm

Sort_2_d_array
Plot_data

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

Difference Between a User-Defined Function and a Subprogram

A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the
CALL statement. A function subprogram is called implicitly by using the function name in an
expression. It can be used in a numeric or string expression the same way a constant would be
used, or it can be invoked from the keyboard. A function’s purpose is to return a single value
(either a REAL number or a string).

There are several functions that are built into the HP Instrument BASIC language which can
be used to return values, such as SIN, SQR, EXP, etc.

Y=SIN(X)+Phase
Root1=(~B+SQR(B*B-4%A*C))/ (2%4)

6-2 Subprograms and
User-Defined Functions

»

User defined functions can extend HP Instrument BASIC if you need a feature that is not
provided.

X=FNFactorial (N)
Angle=FNAtn2(Y,X)

A general guideline, if you want to take a set of data and analyze it to generate a single value,
then implement the subprogram as a function. On the other hand, if you want to actually
change the data itself, generate more than one value as a result of the subprogram, or perform
any 1/0 activity, it is better to use a SUB subprogram.

REAL Precision Functions and String Functions

A function is allowed to return either a REAL or a string value. Let’s examine one which
returns a string. There are two primary differences: the first is that a § must be added to

the name of a function which is to return a string. This is used both in the definition of the
function (the DEF statement) and when the function is invoked. The second difference is that
the RETURN statement in the function returns a string instead of a number.

200 PRINT FNAscii_to_hex$(A$)

1550 DEF FNAscii_to_hex$(A$)
1660 ! Each ASCII byte consists of two hex
1570 ! digits; pretty formatting dictates that

1580 ! a space be inserted between every pair
1580 ! of hex digits. Thus, the output string
1600 ! . will be three times as long as the input
1610 ! string.

1620 !

1630 ! upper four bits lower four bits

1640 ! UUUU LLLL UUUU LLLL

1650 ! shift 4 bits 0000 1111 mask (15)
1660 ! 0000 UUUU 0000 LLLL final

1670 ¢

1680 INTEGER I,Length,Hexupper,Hexlower
1690 Length=LEN(A$)

16956 Length=3+Length

1700 DIM Temp$[Length]

1710 FOR I=1 TO Length

1720 Hexupper=SHIFT(NUM(A$([I]) ,4)
1730 Hexlower=BINAND(NUM(A$[I],15)
1740 Temp$ [3+I-2; 1J=FNHex$(Hexupper)
1750 Temp$ [3*I-1; 1]=FNHex$(Hexlower)
1760 Temp$[3#I;1]=" "

1770 NEXT I

1780 RETURN Temp$

1790 FNEND

1800 DEF FNHex$(INTEGER X)

1810 ! Assume 0<=X<=15)

1820 ! Return ASCII representation of the
1830 ! hex digit represented by the four
1840 ! Dbits of X.

1850 ! If X is between 0 and 9, return
1860 ! "o" ..., "9©

1870 ! If X > 9, return "A" ... "F"

1880 IF X<=9 THEN
1890 RETURN CHR$(48+X) ! ASCII 48 through 57

Subprograms and 6-3
User-Defined Functions

1900 ! represent "O" - "g"

1910 ELSE

1920 RETURN CHR$(55+X) ! ASCII 65 through 70
1930 ! represent "A" - "F"
1940 END IF

1950 FNEND

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and 1800
show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and 1750:

1740 Temp$ [3+I-2; 1]=FNHex$ (SHIFT (NUM(AS$[1]),4))
1750 Temp$ [3+I-1; 1]=FNHex$ (BINAND(NUM(A$[I],15))

Thus it is perfectly legal to use expressions in the pass parameter list of a subprogram.

Program/Subprogram Communication

As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms:

s By passing parameters

m By sharing blocks of common (COM) variables.

Parameter Lists
There are two places where parameter lists occur:

u The pass parameter list is in the CALL statement or FN call:
30 CALL Build_array(Numbers(*),20) ! Subprogram call.

50 PRINT FNSum_array(Numbers(*),20) ! User-defined function call.

It is known as the pass parameter list because it specifies what information is to be passed
to the subprogram.

B The formal parameter list is in the SUB or DEF FN statement that begins the
subprogram’s definition:

70 SUB Build_array(X(s*),N) ! Subprogram "Build_array".
410 DEF FNSum_array(A(*),N) ! User-defined function "Sum_array".

This is known as the formal parameter list because it specifies the form of the information
that can be passed to the subprogram.

Formal Parameter Lists

The formal parameter list is part of the subprogram’s definition, just like the subprogram’s
name. The formal parameter list defines:

m The number of values that may be passed to a subprogram

m The types of those values (string, INTEGER, or REAL, and whether they are simple or
array variables; or I/O path names)

6-4 Subprograms and
User-Defined Functions

O

&

a The variable names the subprogram will use to refer to those values. (This allows the name
in the subprogram to be different from the name used in the calling context.)

The subprogram has the power to demand that the calling context match the types declared
in the formal parameter list—otherwise, an error results.

Pass Parameter Lists

The calling context provides a pass parameter list which corresponds with the formal
parameter list provided by the subprogram. The pass parameter list provides:

m The actual values for those inputs required by the subprogram.

m Storage for any values to be returned by the subprogram (pass by reference parameters
only).

It is perfectly legal for both the formal and pass parameter lists to be null (non-existent).

Passing By Value vs. Passing By Reference
There are two ways for the calling context to pass values to a subprogram:
m Pass by value—the calling context supplies a value and nothing more.

m Pass by reference—the calling context actually gives the subprogram access to the calling
context’s value area (which is essentially access to the calling context’s variable).

The distinction between these two methods is that a subprogram cannot alter the value of
data in the calling context if the data is passed by value, while the subprogram can alter the
value of data in the calling context if the data is passed by reference.

The subprogram has no control over whether its parameters are passed by value or passed by
reference. That is determined by the calling context’s pass parameter list. For instance, in the
example below, the array Numbers(*) is passed by reference, while the quantity 20 is passed
by value.

30 CALL Build_array(Numbers(*),20) ! Subprogram call.
The general rules for passing parameters are as follows:

s In order for a parameter to be passed by reference, the pass parameter list (in the calling
context) must use a variable for that parameter.

a In order for a parameter to be passed by value, the pass parameter list must use an
ezpression for that parameter.

Note that enclosing a variable in parentheses is sufficient to create an expression and that
literals are expressions. Using pass by value, it is possible to pass an INTEGER expression
to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression
to an INTEGER formal parameter (the value of the expression is rounded to the nearest
INTEGER) without causing a type mismatch error (an integer overflow error is generated if
the expression is out of range for an INTEGER).

Subprograms and 6-5
User-Defined Functions

Example Pass and Corresponding Formal Parameter Lists

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read._dvm(@Dvm,A(*) , INTEGER Lower,Upper,Status$,Errflag)

@Dvm

A(%)

Lower Upper

Status$

Errflag

This is an I/O path name which may refer to either an I/0 device or a mass
storage file. Its name here implies that it is a voltmeter, but it is perfectly
legal to redirect I/0 to a file just by using a different ASSIGN with @Dvm.

This is a REAL array. Its size is declared by the calling context. The
parameters Lower and Upper contain its limits.

These are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER variables or
INTEGER expressions, or an error will occur.

This is a simple string which presumably could be used to return the status of
the voltmeter to the main program. The length of the string is defined by the
calling context.

This is a REAL number. The declaration of the string Status$ has limited
the scope of the INTEGER keyword which caused Lower and Upper to require
INTEGER pass parameters.

Let’s look at our previous example from the calling side (which shows the pass parameter list):

CALL Read_dvm(@Voltmeter,Readings(*),1,400,Status$,Errflag)

@Voltmeter

Readings(*)

1, 400

Status$

Errflag

This is the pass parameter which matches the formal parameter @Dvm in the
subprogram. I/O path names are always passed by reference, which means
the subprogram can close the I/O path or assign it to a different file or
device.

This matches the array A(*) in the subprogram’s formal parameter list.
Arrays, too, are always passed by reference.

These are the values passed to the formal parameters Lower and Upper. Since
constants are classified as expressions rather than variables, these parameters
have been passed by value. Thus, if the subprogram used either Lower or
Upper on the left-hand side of an assignment operator, no change would take
place in the calling context’s value area.

This is passed by reference here. If it were enclosed in parentheses, it would
be passed by value. Notice that if it were passed by value, it would be totally
useless as a method for returning the status of the voltmeter to the calling
context.

This is passed by reference.

6-6 Subprograms and
User-Defined Functions

8

COM Blocks

Since we’ve discussed parameter lists in detail, let’s turn now to the other method a
subprogram has of communicating with the main program or with other subprograms, the
COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM is simply a
special case of labeled COM (it is the COM whose name is nothing) with the exception that
blank COM must be declared in the main program, while labeled COM blocks don’t have to
be declared in the main program. Both types of COM blocks simply declare blocks of data
which are accessible to any context having matching COM declarations.

A blank COM block might look like this:

20 COM Conditions(15),INTEGER,Cmin,Cmax,CNuclear_pile,Pile_status$[20],
Tolerance

A labeled COM might look like this:
30 COM /Valve/ Main(10) ,Subvalves(10,15),Q@Valve_ctrl

A COM block’s name, if it has one, will immediately follow the COM keyword, and will be set
off with slashes, as shown above. The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only declare those COM blocks which it needs to have access to. If there
are 150 variables declared in 10 COM blocks, it isn’t necessary for every context to declare the
entire set—only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions. As in parameter lists, matching
COM blocks is done by position and type, not by name.

COM vs. Pass Parameters

There are several characteristics of COM blocks which distinguish them from parameter lists
as a means of communications between contexts:

m COM survives pre-run. In general, any numeric variable is set to 0, strings are set to the
null string, and I/O path names are set to undefined after instructing the program to run,
or upon entering a subprogram. This is true of COM the first time the program runs, but
after COM block variables are defined, they retain their values until:

o SCRATCH A or SCRATCH C is executed,
o A statement declaring a COM block is modified by the user, or

o A new program is brought into memory using the GET command which doesn’t match
the declaration of a given COM block, or which doesn’t declare a given COM block at all.

m COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the line’s
number, possibly a label, the invocation or subprogram header, and possibly (in the case of
a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

s COM blocks can take as many statements as necessary. COM statements can be interwoven
with other statements (though this is considered a poor practice). All COM statements
within a context which have the same name will be part of the definition of that COM
block.

Subprograms and 6-7
User-Defined Functions

m COM blocks can be used for communicating between contexts that do not invoke each
other.

u COM blocks can be used to communicate between subprograms that are not in memory
simultaneously.

8 COM blocks can be used to retain the value of “local” variables between subprogram calls.

s COM blocks allow subprograms to share data without the intervention of the main program.

Hints for Using COM Blocks

Any COM blocks needed by your program must be resident in memory at prerun time,
executing a RUN command, executing GET from the program, or executing a GET from the
keyboard and specifying a run line. Thus if you want to create libraries of subprograms which
share their own labeled COM blocks, it is wise to collect all the COM declarations together
in one subprogram to make it easy to append them to the rest of the program for inclusion at
prerun time. (The subprogram need not contain anything but the COM declarations.)

COM can be used to communicate between programs which overlay each other using GET
statements, if you remember a few rules:

1. COM blocks which match each other exactly between the two programs will be preserved
intact. “Matching” requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables declared,
and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are not declared in the new program
(the one being brought in with the GET) are destroyed.

3. Any COM blocks which are named identically, but which do not match variables and types
identically, are defined to match the definition of the new program. All values stored in
that COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mentioned above in
#3) are initialized implicitly. Numeric variables and arrays are set to zero, strings are set
to the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block.
Subsequent occurrences of the COM block must match the defining block, both in the number
of items, and the types of the items. In the case of strings and arrays, the actual sizes need
be specified only in the defining COM blocks. Subsequent occurrences of the COM blocks
may either explicitly match the size specifications by re-declaring the same size, or they may
implicitly match the size specifications. In the case of strings, this is done by not declaring
any size, just declaring the string name. In the case of arrays, this is done by using the (*)
specifier for the dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40),Status$[20]

The following occurrence of the same COM block within a subprogram matches the COM
block explicitly and is legal:

2000 COM /Dvm_state/ INTEGER Range ,Format,N,REAL
Delay,Lastdata(1:40),Status$[20]

The following block within a different subprogram uses implicit matching and is also legal:

6-8 Subprograms and
User-Defined Functions

~

4010 COM /Dvm_state/ INTEGER Range,Format,N,REAL Delay,Lastdata(*),Status$

In general, the implicit size matching on arrays and strings is preferable to the explicit
matching because it makes programs easier to modify. If it becomes necessary to change the
size of an array or string in a COM block, it only needs to be changed in one statement, the
one which defines the COM block. If all other occurrences of the COM block use the ()
specifier for arrays, and omit the length field in strings, none of those statements will have to
be changed as a result of changing an array or string size.

Context Switching

A subprogram has its own context or state which is distinct from a main program and all
other subprograms. In between the time that a CALL statement is executed (or an FN name
is used) and the time that the first statement in the subprogram gets executed, the computer
performs a “prerun” on the subprogram. This “entry” phase is what defines the context of the
subprogram. The actions performed at subprogram entry are similar, but not identical, to the
actual prerun performed at the beginning of a program. Here is a summary:

m The calling context has a DATA pointer which points to the next item in the current DATA
block which will be used the next time a READ is executed (assuming of course that a
DATA block even exists in the calling program). This pointer is saved away whenever a
subprogram is called, and then the DATA pointer is reset to the first DATA statement in
the new subprogram context.

a The RETURN stack for any GOSUBs in the current context is saved and set to the empty
stack in the new context.

m The system priority of the current context is saved, and the called subprogram inherits
this value. Any change to the system priority which takes place within the subprogram (or
any of the subprograms which it calls in turn) is purely local, since the system priority is
restored to its original value upon subprogram exit.

m Any event-initiated GOTO/GOSUB statements are disabled for the duration of the
subprogram. If any of the specified events occur, this will be logged, but no action will
be taken. (The fact that an event did occur will be logged, but only once—multiple
occurrences of the same event will not be serviced.) Upon exiting the subprogram, these
event-initiated conditions will be restored to active status, and if any of these events
occurred while the subprogram was being executed, the proper branches will be taken.

m Any event-initiated CALL/RECOVER statements are saved away upon entering a
subprogram, but the subprogram still inherits these ON conditions since CALL/RECOVER
are global in scope. However, it is legal for the subprogram to redefine these conditions, in
which case the original definitions are restored upon subprogram exit.

m The current DEG or RAD mode for trigonometric operations and graphics rotations is
stored away. The subprogram will inherit the current DEG or RAD setting, but if it gets
changed within the subprogram, the original setting will be restored when the subprogram
is exited.

Subprograms and 6-9
User-Defined Functions

Variable Initialization

Space for all arrays and variables declared is set aside, whether they are declared explicitly
with DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value
area is initialized as part of the subprogram’s prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys

ON KEYs are a special case of the event-initiated conditions that are part of context
switching. They are special because they are the only event conditions which give visible
evidence of their existence to the user through the softkey labels at the bottom of the CRT.
These key labels are saved away just as the event conditions are, and the labels get restored to
their original state when the subprogram is exited, regardless of any changes the subprogram
made in the softkey definitions. This means the programmer doesn’t have to make any special
allowances for re-enabling his keys and their associated labels after calling a subprogram
which changes them—the language system handles this automatically.

Subprograms and the RECOVER Statement

The event-initiated RECOVER statement allows the programmer to cause the program to
resume execution at any given place in the context defining the ON ... RECOVER as a result
of a specified event occurring, regardless of subprogram nesting,.

Thus, if a main program executes an ON ... RECOVER statement (for example a softkey or
an external interrupt from the SRQ line on an HP-IB), and then calls a subprogram, which
calls a subprogram, which calls a subprogram, etc., program execution can be caused to
immediately resume within the main program as a result of the specified event happening.

Editing Subprograms

Inserting Subprograms

There are some rules to remember when inserting SUB and DEF FN statement in the middle
of the program. All DEF FN and SUB statements must be appended to the end of the
program. If you want to insert a subprogram in the middle of your program because your
prefer to see it listed in a given order, you must perform the following sequence:

1. SAVE the program.

Delete all lines above the point where you want to insert your subprogram.
SAVE the remaining segment of the program in a new file.

GET the original program stored in step 1.

Delete all lines below the point where you want to insert your subprogram.

Type in the new subprogram.

NS gk W

Do a GET from the new file created in step 3.

6-10 Subprograms and
User-Defined Functions

Q

Deleting Subprograms

It is not possible to delete either DEF FN or SUB statements unless you first delete all the
other lines in the subprogram. This includes any comments after the SUBEND or FNEND.
Another way to delete DEF FN and SUB statements is to delete the entire subprogram, up to,
but not including, the next SUB or DEF FN line (if any).

Merging Subprograms

If you want to merge two subprograms together, first examine the two subprograms carefully
to insure that you don’t introduce conflicts with variable usage and logic flow. If you've
convinced yourself that merging the two subprograms is really necessary, here’s how you go
about it:

1. SAVE everything in your program after the SUB or DEF FN statement you want to delete.
2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to number
the segment in such a way as not to overlay the part of the program already in memory.

SUBEND and FNEND

The SUBEND and FNEND statements must be the last statements in a SUB or function
subprogram, respectively. These statements don’t ever have to be executed; SUBEXIT and
RETURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave
like a SUBEXIT. If FNEND is executed, it will cause an error.) Rather, SUBEND and
FNEND are delimiter statements that indicate to the language system the boundaries between

subprograms. The only exception to this rule is the comment statements (either REM or !),
which are allowed after SUBEND and FNEND.

Recursion

Both function subprograms and SUB subprograms are allowed to call themselves. This is
known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the factorial function. The factorial
of a number N is denoted by N! and is defined to be N x (N—1)! where 0!=1 by definition.
Thus N! is simply the product of all the whole numbers from 1 through N inclusive. A
recursive function which computes N factorial is:

100 DEF FNFactorial (INTEGER N)
110 IF N=0 THEN RETURN 1

120 RETURN N»FNFactorial(N-1)
130 FNEND

Subprograms and 6-11
User-Defined Functions

)

Data Storage and Retrieval

This chapter describes some useful techniques for storing and retrieving data.

s First we describe how to store and retrieve data that is part of the HP Instrument BASIC
program. With this method, DATA statements specify data to be stored in the memory
area used by HP Instrument BASIC programs; thus, the data is always kept with the
program, even when the program is stored in a mass storage file. The data items can be
retrieved by using READ statements to assign the values to variables. This is a particularly
effective technique for small amounts of data that you want to maintain in a program file.

m For larger amounts of data, and for data that will be generated or modified by a program,
mass storage files are more appropriate. Files provide means of storing data on mass storage
devices. The two types of data files available with HP Instrument BASIC are described in
this chapter.

o ASCII—used for general text and numeric data storage. (These are the interchange
method with many other HP systems.)

o BDAT—provide the most compact and flexible data storage mechanism.

More details about these files, including how to choose a file type and how to access each, are
described in this chapter.

Storing Data in Programs

This section describes a number of ways to store values in memory. In general, these
techniques involve using program variables to store data. The data are kept with the program
when it is stored on a mass storage device (with SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer’s memory for storing relatively
small amounts of data.

Storing Data in Variables

Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=1/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable’s
name. This technique works well when there are only a relatively few items to be stored or
when several data values are to be computed from the value of a few items. The program will
execute faster when variables are used than when expressions containing constants are used;
for instance, using the variable Inch_per_cm in the preceding example would be faster than

Data Storage and Retrieval 7-1

using the constant expression 1/2.54. In addition, it is easier to modify the value of an item
when it appears in only one place (i.e., in the LET statement).

Data Input by the User

You also can assign values to variables at run-time with the INPUT statement as shown in the
following examples.

100 INPUT "Type in the value of X, please.",Id
200 DISP "Enter the value of X, Y, and Z.";
210 INPUT "“,X,Y,Z

Note that with this type of storage, the values assigned to the corresponding variables are not
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable’s name.

Using DATA and READ Statements

The DATA and READ statements provide another technique for storing and retrieving data
from the computer’s read/write (R/W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

You can have any number of READ and DATA statements in a program in any order you
want. When you RUN a program, the system concatenates all DATA statements in the same
context into a single “data stream.” Each subprogram has its own data stream. The following
DATA statements distributed in a program would produce the following data stream.

100 DATA 1,4,50
200 DATA "BB",20,45

300 DATA X,Y,77

pata STREAM: | 1 | A |s0[BB]20[45] x | ¥ |77]

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes.
Strings that contain a comma, exclamation mark, or quote mark must be enclosed in quotes.
In addition, you must enter two quote marks for every one you want in the string. For
example, to enter the string QUOTE“QUO”TE into a data stream, you would write:

100 DATA "QUOTE""QUO""TE"

7-2 Data Storage and Retrieval

To retrieve a data item, assign it to a variable with the READ statement. Syntactically,
READ is analogous to DATA; but instead of a data list, you use a variable list. For instance,
the statement:

100 READ X,Y,Z$

would read three data items from the data stream into the three variables. Note that the first
two items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ into string
variables. If the string variable has not been dimensioned to a size large enough to hold the
entire data item, the data item is truncated.

The system keeps track of which data item to READ next by using a “data pointer.” Every
data stream has its own data pointer which points to the next data item to be assigned to the
next variable in a READ statement. When you run a program segment, the data pointer is
placed initially at the first item of the data stream. Every time you READ an item from the
stream, the pointer is moved to the next data item. If a subprogram is called by a context,
the position of the data pointer is recorded and then restored when you return to the calling
context.

. Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables
than data items, the system returns an error, and the data pointer is moved back to the
position it occupied before the READ statement was executed.

Examples

The following example shows how data is stored in a data stream and then retrieved. Note
that DATA statements can come after READ statements even though they contain the data
being READ. This is because DATA statements are linked during program pre-run, whereas
READ statements aren’t executed until the program actually runs.

10 DATA November,26

20 READ Month$,Day,Year$

30 DATA 1981,"The date is"

40 READ Str$

50 Print Str$;Month$,Day,Year$
60 END

The date is November 26 1981

Storage and Retrieval of Arrays

In addition to using READ to assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with variables one at a time until
it has filled a row. The next data item then becomes the first element in the next row. You
must have enough data items to fill the array or you will get an error. In the example below,
we show how DATA values can be assigned to elements of a 3-by-3 numeric array.

10 DIM Examplel(2,2)

20 DATA 1,2,3,4,5,6,7,8,9,10,11

30 READ Examplel(#)

40 PRINT USING "3(K,X),/";Exanplel(#)

Data Storage and Retrieval 7-3

50

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ

~ e
® n N
© 0w

END

statement.

Moving the Data Pointer

In some programs, you will want to assign the same data items to different variables. To do
this, you have to move the data pointer so that it is pointing at the desired data item. You
can accomplish this with the RESTORE statement. If you don’t specify a line number or
label, RESTORE returns the data pointer to the first data item in the data stream. If you do
include a line identifier in the RESTORE statement, the data pointer is moved to the first
data item in the first DATA statement at or after the identified line. The example below

illustrates how to use the RESTORE statement.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

Arrayl contains: 1 2 3

DIM Arrayi(1:3)
DIM Array2(0:4)
DATA 1,2,3,4
DATA 5,6,7
READ A,B,C
READ Array2(s)
DATA 8,9

RESTORE

READ Arrayi(*)
RESTORE 140
READ D

'
'
!
1
!
!
!
1
'
!
)
!
'
'
!
'
'
!
!

Dimensions a 3-element array.
Dimensions a 5-element array.
Places 4 items in stream.
Places 3 items in stream.
Reads first 3 items in stream.
Reads next 5 items in stream.
Places 2 items in streanm.

Re-positions pointer to 1st item.
Reads first 3 items in stream.
Moves data pointer to item "8".
Reads "8".

PRINT "Arrayil contains:";lxrayl(*);“ "
PRINT "Array2 contains:";Array2(s);" "
PRINT "A,B,C,D equal:";A;B;C;D

END

Array2 contains: 4 56 6 7 8

A,B,C,D equal: 123 8

7-4 Data Storage and Retrieval

File Input and Output (I/0)

The rest of this chapter describes the second general class of data storage and retrieval—that
of using mass storage files. It presents HP Instrument BASIC programming techniques used
for accessing files.

m The first section gives a brief introduction to the general steps you might take to:
o Choose a file type.
D Store data in any file.

m Subsequent sections describe details of these steps with ASCII, BDAT, and HP-UX or DOS
files.

Brief Comparison of Available File Types

With HP Instrument BASIC, there are three different types of files in which you can store and
retrieve data, ASCII, BDAT, and HPUX or DOS. Understanding the characteristics of each
file type will help you choose the one best suited for your specific application.

Note Note that not every system will implement all of these file types.

m ASCII—used for general text and numeric data storage.
Here are the advantages of this type of file:

O There is less chance of reading the contents into the wrong data type (which is possible
with BDAT and HP-UX files). Thus, it is the easiest file to read when you don’t know
how it was written.

0 The file format provides fairly compact storage for string data.

o ASCII files are compatible with other HP computers that support this file type. (The
full name of ASCII files is “LIF ASCIL.” LIF stands for Logical Interchange Format, a
directory and data storage format that is used by many HP computers.)

o ASCII files containing HP Instrument BASIC program lines can be read with GET and
written with SAVE.

The main disadvantages of ASCII files are that:
o They. can be accessed serially but not randomly.

0O They can be written in only default ASCII format (no formatting is possible, and the
data cannot be stored in internal representation. It is possible, however, to format data
by first sending it to a string variable (with OUTPUT..USING), and then OUTPUT this
string’s contents to the file. See the subsequent section called “Formatted QUTPUT with
ASCII Files” for examples.)

m BDAT—provide the most compact and flexible data storage mechanism.
These files have several advantages:
o They can be randomly or serially accessed.

O More flezibility in data formats and access methods.

Data Storage and Retrieval 7-5

o Faster transfer rates.
o Generally more space-efficient than ASCII files (except for string data items).

o They. allow data to be stored in ASCII format, internal format, or in a “custom” format
(which you can define with IMAGE specifiers).

The disadvantages are that:

o You must know how the data items were written (as INTEGERs, REALs, strings, etc.) in
order to correctly read the data back.

o These data files cannot be interchanged with as many other systems as can ASCII files.

m HP-UX—similar to BDAT files in structure, but also have some of the advantages of ASCII
files:

o0 Like BDAT files, they can also be accessed randomly or serially, and they can use ASCII,
internal, or custom data representations.

o Like ASCII files, they are useful for data-file interchange; however, the set of computers
with which they can be interchanged is slightly different than LIF ASCII files. HP-UX
files can be interchanged with any other system that uses the Hierarchical File System
(HFS) format for mass storage volumes (such as HP-UX systems, and HP Series 200/300
Pascal systems beginning with version 3.2).

o HP-UX files containing HP Instrument BASIC program lines can be read with GET and
written with RE-SAVE.

m DOS—identical to HP-UX files, they provide file compatibility with MS-DOS.

If in doubt about the type of file to use, choose a BDAT file because of its speed and compact
data storage.

Creating Data Files

You can use three BASIC statements to create data files. Use CREATE ASCII to create an
ASCII file, CREATE BDAT to create a BDAT file, or simply CREATE to create an HP-UX or DOS
file. Note that the CREATE statement creates a DOS file on a DOS file system. Otherwise, it
creates an HP-UX file.

For example, the statements:

CREATE ASCII "Text",100
CREATE BDAT "Text",100
CREATE "Data_file",100

all create a data file with a length of 100 records in the current mass storage volume and
directory. The file type is ASCII for the first statement, BDAT for the second, and HP-UX or
DOS for the third.

Note that you can use CREATE, CREATE ASCII, and CREATE BDAT to create files
within LIF volumes, HFS volumes and DOS volumes. Each of these statements contains a file
specifier which can include a volume and directory specification. If no volume or directory

is specified, it creates the file in the current volume and directory as determined by the last
MASS STORAGE IS statement.

7-6 Data Storage and Retrieval

O

)

Overview of File I/O

Storing data in files requires a few simple steps. The following program segment shows a
simple example of placing several items in a data file.

100
110
120

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
650

790
800
810
820
830
840
850
860
870
880

REAL Real_array1(1:50,1:25),Real_array2(1:50,1:25)
INTEGER Integer_var
DIM String$[100]

.

! Specify default mass storage.

MASS STORAGE IS “:,700,1"

!

! Create BDAT data file with ten (256-byte) records
! on the specified mass storage device (:,700,1).
CREATE BDAT "File_1",10

!

! Assign (open) an I/0 path name to the file.
ASSIGN OPath_1 TO "File_1"

]

! Write various data items into the file.

OUTPUT €ePath_1;"Literal" ! String literal.
OUTPUT @Path_1;Real_arrayi(*) ! REAL array.
OUTPUT @Path_1;255 ! Single INTEGER.

! Close the I/0 path.
ASSIGN C@Path_1 TO *

! Open another I/0 path to the file (assume same default drive).
ASSIGN €F_1 TO "File_1"
‘

! Read data into another array (same size and type).

ENTER OF_1;String_var$! Must be same data types
ENTER €F_1;Real_array2(*) ! used to write the file.
ENTER €F_1;Integer_var ! "Read it like you wrote it."

! Close I/0 path.
ASSIGN CF_1 TO =*

Line 400 specifies the default mass storage device, which is to be used whenever a mass storage
device is not ezplicitly specified during subsequent mass storage operations. The term mass
storage volume specifier (msvs) describes the string expression used to uniquely identify which
device is to be the mass storage. In this case, “:,700,1” is the msvs.

In order to store data in mass storage, a data file must be created (or already exist) on the
mass storage media. In this case, line 440 creates a BDAT file; the file created contains 10
defined records of 256 bytes each. (Defined records and record size are discussed later in this
chapter.)

The term file specifier describes the string expression used to uniquely identify the

file. In this example, the file specifier is simply File_1, which is the file’s name. If the
file is to be created (or already exists) on a mass storage device other than the default
mass storage, the appropriate msus must be appended to the file name. If that device
has a hierarchical directory format (such as HFS or MS-DOS discs), then you may also
have to specify a directory path (such as /USERS/MARK/PROJECT_1 for LIF or
\USERS\MARK\PROJECT_1 for MS-DOS).

Data Storage and Retrieval 7-7

Then, in order to store data in (or retrieve data from) the file, you must assign an I/O path
name to the file. Line 470 shows an example of assigning an I/O path name to the file (also
called opening an I/O path to the file). Lines 500 through 520 show data items of various
types being written into the file through the I/O path name.

The I/O path name is closed after all data have been sent to the file. In this instance, closing
the I/O path may have been optional, because a different I/O path name is assigned to the
file later in the program. (All I/O path names are automatically closed by the system at the
end of the program.) Closing an I/O path to a file updates the file pointers.

Since these data items are to be retrieved from the file, another ASSIGN statement is
executed to open the file (line 800). Notice that a different I/O path name was arbitrarily
chosen. Opening this I/0O path name to the file sets the file pointer to the beginning of the
file. (Re-opening the I/O path name @File_1 would have also reset the file pointer.)

Notice also that the msvs is not included with the file name. This shows that the current
default mass storage device, here “:,700,1”, is assumed when a mass storage device is not
specified. .

The subsequent ENTER statements read the data items into variables; with BDAT and
HP-UX files, the data type of each variable must match the data type type of each data item.
With ASCII files, for instance, you can read INTEGER items into REAL variables and not
have problems.

This is a fairly simple example; however, it shows the general steps you must take to access
files.

A Closer Look at General File Access

Before you can access a data file, you must assign an I/O path name to the file. Assigning

an I/O path name to the file sets up a table in computer memory that contains various
information describing the file, such as its type, which mass storage device it is stored on, and
its location on the media. The I/O path name is then used in I/O statements (OUTPUT, and
ENTER) which move the data to and from the file.

Opening an 1/O Path

I/O path names are similar to other variable names, except that I/O path names are preceded
by the “@” character. When an I/O path name is used in a statement, the system looks up
the contents of the I/O path name and uses them as required by the situation.

To open an I/O path to a file (to set the validity flag to Open), assign the I/O path name to a
file specifier by using an ASSIGN statement. For example, executing the following statement:

ASSIGN @Pathl TO "Example"

assigns an I/O path name called “@Path1” to the file “Example”. The file that you

open must already exist and must be a data file. If the file does not satisfy one of these
requirements, the system will return an error. If you do not use an msus in the file specifier,
the system will look for the file on the current MASS STORAGE IS device. If you want to
access a different device, use the msus syntax described earlier. For instance, the statement:

ASSIGN QPath2 TO "Example:HP9122,700"

open an I/O path to the file “Example” on the specified mass storage device. You must
include the protect code or password, if the LIF file has one.

7-8 Data Storage and Retrieval

Once an I/O path has been opened to a file, you always use the path name to access the file.
An I/0 path name is only valid in the context in which it is opened, unless you pass it as a
parameter or put it in the COM area. To place a path name in the COM area, simply specify
the path name in a COM statement before you ASSIGN it. For instance the two statements
below would declare an I/O path name in an unnamed COM area and then open it:

100 COM ¢Path3
110 ASSIGN CPath3 TO "Filel"

Assigning Attributes

When you open an I/O path, certain attributes are assigned to it which define the way
data is to be read and written. There are two attributes which control how data items are
represented: FORMAT ON and FORMAT OFF.

s With FORMAT ON, ASCII data representations are used.
s With FORMAT OFF, HP Instrument BASIC’s internal data representations are used.

Additional attributes are available, which provide control of such functions as changing
end-of-line (EOL) sequences. See ASSIGN in the HP Instrument BASIC Language Reference
for further details.

As mentioned in the tutorial section, BDAT files can use either data representation; however,
ASCII files permit only ASCII-data format. Therefore, if you specify FORMAT OFF for an

I/O path to an ASCII file, the system ignores it. The following ASSIGN statement specifies a
FORMAT attribute:

ASSIGN QPathi TO "File1"; FORMAT OFF

If Filel is a BDAT or HP-UX file, the FORMAT OFF attribute specifies that the internal
data formats are to be used when sending and receiving data through the I/O path. If the
file is of type ASCII, the attribute will be ignored. Note that FORMAT OFF is the default
FORMAT attribute for BDAT and HP-UX files.

Executing the following statement directs the system to use the ASCII data representation
when sending and receiving data through the I/O path:

ASSIGN Q@Path2 TO "File2" ; FORMAT ON

If File2 is a BDAT or HP-UX file, data will be written using ASCII format, and data read
from it will be interpreted as being in ASCII format. For an ASCII file, this attribute is
redundant since ASCII-data format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/O path
name and attribute in an ASSIGN statement while excluding the file specifier. For instance, if
you wanted to change the attribute of @Path2 to FORMAT OFF, you could execute:

ASSIGN Q@Path2; FORMAT OFF
Alternatively, you could re-enter the entire statement:
ASSIGN QPath2 TO "File2" ; FORMAT OFF

These two statements, however, are not identical. The first one only changes the FORMAT
attribute. The second statement resets the entire I/O path table (e.g., resets the file pointer
to the beginning of the file).

Data Storage and Retrieval 7-9

Closing 1/O Paths

I/O path names not in the COM area are closed whenever the system moves into a stopped
state (e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names local to a context are
closed when control is returned to the calling context. Re-ASSIGNing an I/O path name will
also cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an * (asterisk).
For instance, the statement:

ASSIGN @Path2 TO *

closes @Path2. @Path2 cannot be used again until it is re-assigned. You can re-assign a path
name to the same file or to a different file.

7-10 Data Storage and Retrieval

9

~—"

A Closer Look at Using ASCII Files

You have already been introduced to general file I/O techniques in the example of writing and
reading a BDAT file in the preceding section. This section gives you a closer look at ASCII
file I/O techniques.

Example of ASCII File 1/O

Storing data in ASCII files requires a few simple steps. The following program segment shows
a simplistic example of placing several items in an ASCII data file. Note that it is nearly
identical to the first example in the preceding “Overview of File I/Q” section, except for
changes to the CREATE statement (line 440) and file name.

100
110
120

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

790
800
810
820
830
840
850
860

870
880

REAL Real_array1(1:50,1:25),Real_array2(1:50,1:25)
INTEGER Integer_var

DIM String$[100]

! Specify "default" mass storage device.
MASS STORAGE IS ":,700,1"

!

! Create ASCII data file with 10 sectors

! on the "default" mass storage device.
CREATE ASCII "File_2",10

]

! Assign (open) an I/0 path name to the file.
ASSIGN OPath_1 TO "File_2"

!

! Write various data items into the file.

OUTPUT ¢Path_1;"Literal” ! String literal.
OUTPUT @Path_1;Real_arrayi(s*) ! REAL array.
OUTPUT €@Path_1;265 ! Single INTEGER.

!
! Close the I/0 path.
ASSIGN €Path_1 TO =

.

! Open another I/0 path to the file (assume same default drive).
ASSIGN OF_1 TO "File_2"

'

! Read data into another array (same size and type).

ENTER €F_1;String_var ! Must be same data types.

ENTER OF_1;Real_array2(*)

ENTER QF_1;Integer_var

! Close I/0 path.
ASSIGN €F_1 TO =

Data Storage and Retrieval 7-11

Data Representations in ASCII Files

In an ASCII file, every data item, whether string or numeric, is represented by ASCII
characters; one byte represents one ASCII character. Each data item is preceded by a
two-byte length header which indicates how many ASCII characters are in the item. However,
there is no “type” field for each item; data items contain no indication (in the file) as to
whether the item was stored as string or numeric data. For instance, the number 456 would
be stored as follows in an ASCII file:

0| 4 41516 YY)
W
LENGTH ASCH

HEADER = CODES

BINARY 4

Note that there is a space at the beginning of the data item. This signifies that the number is
positive. If a number is negative, a minus sign precedes the number. For instance, the number
—456, would be stored as follows:

ol4]-[4]5]s cee

LENGTH ASCI
BINARY 4

If the length of the data item is an odd number, the system “pads” the item with a space to
make it come out even. The string “ABC”, for example, would be stored as follows:

0|3 A|B]C [Y

wﬁ
LENGTH ASCIHI

HEADER = (CODES
BINARY 3

There is often a relatively large amount of overhead for numeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

913 112 et ese
Ww
LENGTH ASCII
HEADER = CODES
BINARY 3

7-12 Data Storage and Retrieval

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by
the system’s “number builder” routine, which derives the number’s internal representation.
(Keep in mind that this routine is called automatically when data are entered into a numeric
variable.) For example, suppose that the following item is stored in an ASCII file:

ol|10]lAa|B]|C| = 11213 X{Y eee
w Ry —
LENGTH ASCII

HEADER = CODES

BINARY 10

Although it may seem obvious that this is not a numeric data item, the system has no way
of knowing this since there is no type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the number-builder routine to strip
away all non-numeric characters and spaces and assign the value 123 to the numeric variable.
When you add to this the intricacies of real numbers and exponential notation, the situation
becomes more complex. For more information about how the number builder works, see the
chapter called “Entering Data” in HP Instrument BASIC Interfacing Techniques.

Because ASCII files require so much overhead (for storage of “small” items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type for numeric data when compactness is an important criteria. However, as
we mentioned before, ASCII files are interchangeable with many other HP products.

In this chapter, we refer to the data representation described above as ASCII-data format.

As mentioned earlier, you can also store data in BDAT files in ASCII format (by using the
FORMAT ON attribute). Be careful not to confuse the ASCII-file type with the ASCII-data
format. The ASCII format used in BDAT files when FORMAT ON is specified differs from
the format used in ASCII files in several respects. Each item output to an ASCII file has its
own length header; there are no length headers in a FORMAT ON BDAT file. At the end of
each OUTPUT statement an end-of-line sequence is written to a FORMAT ON BDAT file
unless suppressed by an IMAGE or EOL OFF. No end-of-line sequence is written to an ASCII
file at the end of an QOUTPUT statement.

In general, you should only use ASCII files when you want to transport data between HP
Instrument BASIC and other machines. There may be other instances where you will want to
use ASCII files, but you should be aware that they cause a noticeable transfer rate degradation
compared to BDAT and HP-UX files (especially for numeric data items).

Data Storage and Retrieval 7-13

Formatted OUTPUT with ASCII Files

As mentioned in the “Brief Comparison of File Types,” you cannot format items sent to
ASCII files; that is, you cannot use the following statement with an ASCII file:

OUTPUT QAscii_file USING "#,DD.D,4X,5A" ;Number,String$

You can, however, direct the output to a string variable first, and then OUTPUT this
formatted string to an ASCII file:

OUTPUT String_var$ USING "#,DD.D,4X,54";Number,String$
OUTPUT QAscii_file;String_var$

When a string variable is specified as the destination of data in an QUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,
item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables; in fact, data output to string variables is
exactly like that sent to devices through I/O paths with the FORMAT ON attribute.

When using OUTPUT to a string, characters are always placed into the variable beginning
at the first position; no other position can be specified as the beginning position at which
data will be placed. Thus, random access of the information in string variables is not allowed
from OUTPUT and ENTER statements; all data must be accessed serially. For instance,

if the characters “1234” are output to a string variable by one OUTPUT statement, and

a subsequent QOUTPUT statement outputs the characters “5678” to the same variable,

the second output does not begin where the first one left off (i.e., at string position five).
The second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable’s length header (2 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

The following example program shows how outputs to string variables can be used to reduce
the overhead required in ASCII data files. To do this, the program compares two possible
methods for storing data in an ASCII data file. The first method stores 64 two-byte items in a
file one at a time. Each two-byte item is preceded by a two-byte length header. The second
method stores 64 two-byte items in a string array which is output to a string variable. The
string variable is then output to an ASCII data file with only one two-byte length header
being used. Since the second method used only one two-byte length header to store 64
two-byte items, it can easily be seen that the second method required less overhead. Note that
the second method is also the only way to format data sent to ASCII data files.

100 PRINTER IS CRT

110 !

120 ! Create a file 1 record long (=256 bytes).
130 ON ERROR GOTO File_exists

140 CREATE ASCII "TABLE",1

150 File_exists: OFF ERROR

160 !

170 !

180 ! First method outputs 64 items individually..
180 ASSIGN @Ascii TO "TABLE"

200 FOR Ttem=1 TO 64 ! Store 64 2-byte items.

7-14 Data Storage and Retrieval

~

210 OUTPUT QAscii;CHR$ (ITtem+31)&CHRS (64+RND#*32)
220 STATUS @Ascii,5;Rec,Byte

230 DISP USIKG Image.l;Item,Rec,Byte

240 NEXT Item

250 Image_1: IMAGE "Item ",DD," Record ",D," Byte ",3D
260 DISP

270 Bytes_used=256#%(Rec-1)+Byte-1

280 PRINT Bytes_used;" bytes used with 1st method."

290 PRINT

300 PRINT

310 !

320 !

330 ! Second method consolidates items.

340 DIM Array$(1:64)[2],String$[128]
350 ASSIGN @Ascii TO "TABLE"

360 !

370 FOR Item=1 TO 64

380 Array$(Item)=CHR$(Item+31) E&CHR$ (64+RND*32)

390 NEXT Item

400 !

410 OUTPUT String$d;Array$(#); ! Consolidate in string variable.
420 OUTPUT ©@Ascii;String$! OUTPUT to file as 1 item.

430 !

440 STATUS QAscii,5;Rec,Byte

450 Bytes_used=256#(Rec-1)+Byte-1

460 PRINT Bytes_used;" bytes used with 2nd method."
470 !

480 END

The program shows many of the features of using ASCII files and string variables. The first
method of outputting the data items shows how the file pointer varies as data are sent to the
file. Note that the file pointer points to the nezt file position at which a subsequent byte will
be placed. In this case, it is incremented by four by every OUTPUT statement (since each
item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, which would have resulted in using slightly less
disc-media space; however, using BDAT files usually saves much more disc space than would
be saved in this example. The program does not show that ASCII files cannot be accessed
randomly; this is one of the major differences between using ASCII and BDAT (and HP-UX)
files.

Using VALS

The VAL$ function (or a user-defined function subprogram) and outputs made to string
variables can be used to generate the string representation of a number. The advantage of
the latter method is you can explicitly specify the number’s image. The following program
compares a string generated by the VAL$ function to that generated by outputting a number
to a string variable.

100 X=12345678

i10 !

120 PRINT VAL$(X)

130 !

140 OUTPUT Val$ USING "#,3D.E";X
150 PRINT val$

160 !

170 END

Data Storage and Retrieval 7-15

Printed Results

1.2345678E+7
123 .E+05

Formatted ENTER with ASCII Files

Data is entered from string variables in much the same manner as output to the variable. For
example,

ENTER QFile;String$
ENTER String$;Varil, Var2$

All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if a subsequent ENTER statement reads characters from the variable,
the read also begins at the first position. If more data is to be entered from the string than
is contained in the string, an error is reported; however, all data entered into the destination
variable(s) before the end of the string was encountered remain in the variable(s) after the
€eITor occurs.

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length. Thus,
statement-termination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminators are
still required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

A Closer Look at BDAT and HP-UX or DOS Files

As mentioned earlier, BDAT and HP-UX files are designed for flexibility (random and serial
access, choice of data representations), storage-space efficiency, and speed. This chapter
provides several examples of using these types of files.

Data Representations Available
The data representations available are:

a HP Instrument BASIC internal formats (allow the fastest data rates and are generally the
most space-efficient)

m ASCII format (the most interchangeable)
» Custom formats (design your own data representations using IMAGE specifiers)

The remainder of this section gives more details for each type of data representation.

7-16 Data Storage and Retrieval

®

Random vs. Serial Access

Random access means that you can directly read from and write to any record within the file,
while serial access only permits you to access the file in order, from the beginning. That is,
you must read records 1, 2, ... , n—1 before you can read record n. Serial access can waste a
lot of time if you’re trying to access data at the end of a file. On the other hand, if you want
to access the entire file sequentially, you are better off using serial access than random access,
because it generally requires less programming effort and often uses less file space. BDAT and
HP-UX files can be accessed both randomly and serially, while ASCII files can be accessed
only serially.

Data Representations Used in BDAT Files

BDAT files allow you to store and retrieve data using internal format, ASCII format, or
user-defined formats.

w With internal format (FORMAT OFF), items are represented with the same format the
system uses to store data in internal computer memory. (This is the default FORMAT for
BDAT and HP-UX files.)

m With ASCII format (FORMAT ON), items are represented by ASCII characters.

m User-defined formats are implemented with programs that employ OUTPUT and ENTER
statements that reference IMAGE specifiers (items are represented by ASCII characters).

Complete descriptions of ASCII and user-defined formats are given in HP Instrument
BASIC Interfacing Techniques. This section shows the details of internal (FORMAT OFF)
representations of numeric and string data.

BDAT Internal Representations (FORMAT OFF)

In most applications, you will use internal format for BDAT files. Unless we specify otherwise,
you can assume that when we talk about retrieving and storing data in BDAT files, we are
also talking about internal format. This format is synonymous with the FORMAT OFF
attribute, which is described later in this chapter.

Because FORMAT OFF assigned to BDAT files uses almost the same format as internal
memory, very little interpretation is needed to transfer data between the computer and a
FORMAT OFF file. FORMAT OFTF files, therefore, not only save space but also save time.

Data stored in internal format in BDAT files require the following number of bytes per item:

Internal
Data Type Representation

INTEGER 2 bytes

REAL 8 bytes

String 4-byte length header; 1 byte
per character (plus 1 pad
byte if string length is an
odd number)

Data Storage and Retrieval 7-17

INTEGER values are represented in BDAT files which have the FORMAT OFF attribute by
using a 16-bit, two’s-complement notation, which provides a range —32 768 through 32 767. If
bit 15 (the MSB) is 0, the number is positive. If bit 15 equals 1, the number is negative; the
value of the negative number is obtained by changing all ones to zeros, and all zeros to ones,
and then adding one to the resulting value.

Binary Decimal
Representation Equivalent
00000000 00010111 23
11111111 11101000 —24
100000600 00000000 -32768
01111111 11111111 32767
11111111 11111111 -1
00000000 00000001 1
00100011 01000111 9031
11011100 10111001 -9031

REAL values are stored in BDAT files by using their internal format (when FORMAT OFF
is in effect): the IEEE-standard, 64-bit, floating-point notation. Each REAL number is
comprised of two parts: an exponent (11 bits), and a mantissa (53 bits). The mantissa uses
a sign-and-magnitude notation. The sign bit for the mantissa is not contiguous with the rest
of the mantissa bits; it is the most significant bit (MSB) of the entire eight bytes. The 11-bit
exponent is offset by 1 023 and occupies the 2nd through the 12th MSB’s. Every REAL
number is internally represented by the following equation. (Note that the mantissa is in
binary notation):

-ymantissa sign . jexponent — 1023 . 4 ,opyioqn

String data are stored in FORMAT OFF BDAT files in their internal format.

Every character in a string is represented by one byte which contains the character’s ASCII
code. A 4-byte length header contains a value that specifies the length of the string. If the
length of the string is odd, a pad character is appended to the string to get an even number of
characters; however, the length header does not include this pad character.

The string “A” would be stored:

00000000 00000000 00000000 00000001 01000001 00100000
Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not
all operations use the space as the pad character.

7-18 Data Storage and Retrieval

M

N—

ASCII and Custom Data Representations

When using the ASCII data format for BDAT files, all data items are represented with ASCII
characters. With user-defined formats, the image specifiers referenced by the OUTPUT or
ENTER statement are used to determine the data representation (which is ASCII characters).

OUTPUT @File USING "SDD.DD,XX,B,#";Number,Binary_value
ENTER @File USING "B,B,40A,%";Bin_vall,Bin_val2,String$

Using both of these formats with BDAT files produce results identical to using them with
devices. The entire subject is described fully in HP Instrument BASIC Interfacing Techniques.

Data Representations with HP-UX and DOS Files
HP-UX and DOS files are very similar to BDAT files. The only differences between them are:
m The internal representation (FORMAT OFF) of strings is slightly different:

o HP-UX and DOS FORMAT OFF strings have no length header; instead, they are
terminated by a null character, CHR$(0).

o BDAT FORMAT OFF strings have a 4-byte length header;

w HP-UX and DOS files have a fized record length of 1. (BDAT files allow user-definable
record lengths.)

m HP-UX and DOS files have no system sector like BDAT files do (see the next section for
details).

The FORMAT ON representations for HP-UX files are the same as for devices. The entire
subject is described fully in HP Instrument BASIC Interfacing Techniques.

Note Throughout this section, you should be able to assume that—unless otherwise
stated—the techniques shown will apply to HP-UX and DOS as well as BDAT
files.

BDAT File System Sector

On the disc, every BDAT file is preceded by a system sector that contains an end-of-file
(EOF) pointer and the number of defined records in the file. All data is placed in succeeding
sectors. You cannot directly access the system sector. However, as you shall see later, it is
possible to indirectly change the value of an EOF pointer.

Data Storage and Retrieval 7-19

SECTOR: o 1 , 5
' NUMBER
EOF | oF Y
POINTER i DEFINED cee
! RECORDS
L & I\
hd hd
SYSTEM SECTOR DATA

EQOF Pointer: e number of sectors from beginning of file
(32-bit binary number)

e number of bytes from beginning of sector
(32=bit binary number)

Number of defined records: See description below
(32-bit binary number)

Defined Records

To access a BDAT file randomly, you specify a particular defined record. Records are the
smallest units in a file directly addressable by a random QUTPUT or ENTER.

= With BDAT files, defined records can be anywhere from 1 through 65 534 bytes long,.
s With HP-UX and DOS files, defined records are always 1 byte long.

Specifying Record Size (BDAT Files Only)

Both the length of the file and the length of the defined records in it are specified when you
create a BDAT file. This section shows how to specify the record length of a BDAT file. (The
next section talks about how to choose the record length.)

For example, the following statement would create a file called Example with 7 defined
records, each record being 128 bytes long;:

CREATE BDAT "Example",7,128

If you don’t specify a record length in the CREATE BDAT statement, the system will set
each record to the default length of 256 bytes.

Both the record length and the number of records are rounded to the nearest integer.
For example, the statement:

CREATE BDAT "0dd",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement:
CREATE "Odder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

Once a file is created, you cannot change its length, or the length of its records. You must
therefore calculate the record size and file size required before you create a file.

7-20 Data Storage and Retrieval

Choosing A Record Length (BDAT Files Only)

Record length is important only for random OQUTPUTs and ENTERs. It is not important for
serial access. The most important consideration in selecting of a proper record length is the
type of data being stored and the way you want to retrieve it. Suppose, for instance, that you
want to store 100 real numbers in a file, and be able to access each number individually. Since
each REAL number uses 8 bytes, the data itself will take up 800 bytes of storage.

SYSTEM SECTOR cooe

Y

800 BYTES OF DATA

The question is how to divide this data into records. If you define the record length to be
8 bytes, then each REAL number will fill a record. To access the 15th number, you would
specify the 15th record. If the data is organized so that you are always accessing two data
items at a time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not
evenly divisible by eight. If, for example, you set the record length to four, you would only be
able to randomly access half of each real number at a time. In fact, the system will return an
End-Of-Record condition if you try to randomly read data into REAL variables from records
that are less than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERS, you would want to define the record length to be a multiple of two.
To access each INTEGER individually, you would use a record length of two; to access two
INTEGERs at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can
be of variable length. If you have three strings in a row that are 5, 12, and 18 bytes long,
respectively, there is no record length less than 22 that will permit you to randomly access
each string. If you select a record length of 10, for instance, you will be able to randomly
access the first string but not the second and third.

If you want to access strings randomly, therefore, you should make your records long enough
to hold the largest string. Once you’ve done this, there are two ways to write string data to a
BDAT file. The first, and easiest, is to output each string in random mode. In other words,
select a record length that will hold the longest string and then write each string into its own
record. Suppose, for example, that you wanted to OUTPUT the following 5 names into a
BDAT file and be able to access each one individually by specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

Data Storage and Retrieval 7-21

The longest name, “Steve Anderson”, is 14 characters. To store it in a BDAT file would
require 18 bytes (four bytes for the length header). So you could create a file with record
length of 18 and then OUTPUT each item into a different record:

100 CREATE BDAT "Names",5,18 ! Create a file.

110 ASSIGN €File TO "Names" ! Open the file (FORMAT OFF).
120 OUTPUT OFile,1;"John Smith" ! Write names to

130 OQUTPUT @File,2;"Steve Anderson" ! successive records

140 OUTPUT ¢File,3;"Mary Martin" ! in file.

150 OUTPUT €File,4;"Bob Jones"

160 OUTPUT €File,5;"Beth Robinson"

On the disc, the file Names would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown in ASCII characters.

LolojofidJJo]hIn] TSTrfiTtTh] Jx[xTxToToT0[i St Te[vIe] JATn]d]e]
[clslo]nfofofoftilM[a]r [y] TM[o]rTtTiTnTel<TxT0[oT0]s]ET0]b] [9]0]

inlelslelx|x[x]JoJoJofig[B]e]t[n] IRIOIbIiInISIOInl@IXIxIXIXIx'IXIﬂ

= length header
= whatever data previously resided in that space

1
X
@ pad character

The unused portions of each record contain whatever data previously occupied that physical
space on the disc.

Writing Data to BDAT, HP-UX and DOS Files

Data is always written to a file with an OUTPUT statement via an I/O path. You can
OUTPUT numeric and string variables, numeric and string expressions, and numeric and
string arrays. When you OUTPUT data with the FORMAT OFF, data items are written to
the file in internal format (described earlier).

There is rio limit to the number of data items you can write in a single OUTPUT statement,
except that program statements are limited to two CRT lines. Also, if you try to OUTPUT
more data than the file can hold, or the record can hold (if you are using random access), the
system will return an EOF or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output before the end condition occurred.

There is also no restriction on mixing different types of data in a single QOUTPUT statement.
The system decides which data type each item is before it writes the item to the disc. Any
item enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according
to their type (8 bytes for REAL values, and 2 bytes for INTEGER values). Arrays are written
to the file in row-major order (right-most subscript varies quickest).

Each data item in an OUTPUT statement should be separated by either a comma or
semi-colon (there is no operational difference between the two separators with FORMAT
OFF). Punctuation at the end of an OUTPUT statement is ignored with FORMAT OFF.

7-22 Data Storage and Retrieval

&

Sequential (Serial) OUTPUT

Data is written serially to BDAT and HP-UX files whenever you do not specify a record
number in an OUTPUT statement. When writing data serially, each data item is stored
immediately after the previous item (with FORMAT OFF in effect, there are no separators
between items). Sector and record boundaries are ignored. Data items are written to the file
one by one, starting at the current position of the file pointer. As each item is written, the file
pointer is moved to the byte following the last byte of the preceding item. After all of the
data items have been OUTPUT, the file pointer points to the byte following the last byte just
written.

There are a number of circumstances where it is faster and easier to use serial access

instead of random access. The most obvious case is when you want to access the entire file
sequentially. If, for example, you have a list of data items that you want to store in a file and
you know that you will never want to read any of the items individually, you should write the
data serially. The fastest way to write data serially is to place the data in an array and then
OUTPUT the entire array at once.

Another situation where you might want to use serial access is if the file is so small that it can
fit entirely into internal memory at once. In this case, even if you want to change individual
items, it might be easier to treat the entire file as one or more arrays, manipulate as desired,
and then write the entire array(s) back to the file.

Random OUTPUT

Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT,
there are EOF and file pointers that are updated after every OUTPUT. The EOF pointers
follow the same rules as in serial access. The file pointer positioning is also the same, except
that it is moved to the beginning of the specified record before the data is OUTPUT. If you
wish to write randomly to a newly created file, start at the beginning of the file and write
some “dummy” data into every record.

If you attempt to write more data to a record than the record will hold, the system will report
an End-Of-Record (EOR) condition. An EOF condition will result if you try to write data
more than one record past the EQF position. EOR conditions are treated by the system just
like EOF conditions, except that they return Error 60 instead of 59. Data already written to
the file before an EOR condition arises will remain intact.

Reading Data From BDAT, HP-UX and DOS Files

Data is read from files with the ENTER statement. As with OUTPUT, data is passed along
an I/O path. You can use the same I/O path you used to OUTPUT the data or you can use a
different I/O path.

You can have several variables in a single ENTER statement. Each variable must be
separated from the other variables by either a comma or semi-colon. It is extremely important
to make sure that your variable types agree with the data types in the file. If you wrote a
REAL number to a file, you should ENTER it into a REAL variable; INTEGERs should be
entered into INTEGER variables; and strings into string variables. The rule to remember is:

Read it the way you wrote it.

That is the only technique that is always guaranteed to work.

Data Storage and Retrieval 7-23

In addition to making sure that data types agree, it is also advisable to make sure that
access modes agree. If you wrote data serially, you should read it serially; and if you wrote
it randomly, you should read it randomly. There are a few exceptions to this rule which we
discuss later. However, you should be aware that mixing access modes can lead to erroneous
results unless you are aware of the precise mechanics of the file system.

Reading String Data From a File

When reading string data from a file, you must enter it into a string variable. How the system
does this depends on file type and FORMAT attribute assigned to the file:

m With FORMAT OFF assigned to a BDAT file, the system reads and interprets the first
four bytes after the file pointer as a length header. It will then try to ENTER as many
characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

s With FORMAT OFF assigned to an HP-UX file, strings have no length header. Instead,
they are assumed to be null-terminated; that is, entry into the string terminates when a null
character, CHR$(0), is encountered.

s With FORMAT ON assigned to either type of file, the system reads and interprets the bytes
as ASCII characters. The rules for item and ENTER-statement termination match those for
devices (see the “Entering Data” chapter of HP Instrument BASIC Interfacing Techniques
for details.)

After an ENTER statement has been executed, the file pointer is positioned to the next
unread byte. If the last data item was a padded string (written to a BDAT file when using
FORMAT OFF), the file pointer is positioned after the pad. If you use the same I/O path
name to read and write data to a file, the file pointer will be updated after every ENTER and
OUTPUT statement. If you use different I/O path names, each will have its own file pointer
which is independent of the other. However, be aware that each also has its own EOF pointer
and that these pointers may not match, which can cause problems.

Entering data does not affect the EOF pointers. If you attempt to read past an EOF pointer,
the system will report an EOF condition.

Serial ENTER

When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds, byte by byte, until all of the variables in the ENTER
statement have been filled. If there is not enough data in the file to fill all of the variables,
the system returns an EOF condition. All variables that have already taken values before the
condition occurs retain their values.

The following program creates a BDAT file, assigns an I/O path name to the file (with default
FORMAT OFF attribute), writes five data items serially, and then retrieves the data items.

7-24 Data Storage and Retrieval

8

10 CREATE BDAT "STORAGE",1 ! Could also be an HP-UX file.
20 ASSIGN CPath TO "STORAGE"

30 INTEGER Num,First,Fourth

40 Num=5§

60 OUTPUT @Path;Num,"squared"," equals",Num#*Num,"."

70 ASSIGN CPath TO "STORAGE"

80 ENTER €Path;First,Second$,Third$,Fourth,Fifth$

90 PRINT First;Second$;Third$,Fourth,Fifth$

100 END

6 squared equals 25.

Note that we re-ASSIGNed the I/O path in line 70. This was done to re-position the file
pointer to the beginning of the file. If we had omitted this statement, the ENTER would have
produced an EOF condition.

Random ENTER

When you ENTER data in random mode, the system starts reading data at the beginning
of the specified record and continues reading until either all of the variables are filled or the
system reaches the EOR or EOF. If the system comes to the end of the record before it has
filled all of the variables, an EOR condition is returned.

In the following example, we randomly QUTPUT data to 5 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "SQ_R0OOTS",5,2%8

20 ASSIGN 6Path TO "SQ_ROOTS" ! Default is FORMAT OFF.

30 FOR Inc=1 to &

40 OUTPUT @Path,Inc;Inc,SQR(Inc) ! Outputs two 8-byte REALs each time.
50 NEXT Inc

60 FOR Inc=5 TO 1 STEP -1

70 ENTER @Path,Inc;Num(Inc),Sqroot(Inc)

80 NEXT Inc

90 PRINT "Number","Square Root"

100 FOR Inc=1 TO 5

110 PRINT Num(Inc),Sqroot(Inc)
120 NEXT Inc
130 END

Number Square Root

1
1.41421356237
1.73205080757
2
2.2360679775

In this example, there was no need to re-ASSIGN the I/O path because the random ENTER
automatically re-positions the file pointer.

Line 40 of the above program outputs two 8-byte REALs to the BDAT file called SQ_ROOTS.
Note that this line would have to be changed for outputs made to HP-UX files because
HP-UX files always have a record length of one. For example, the OUTPUT statement would
look like this:

OUTPUT @Path, ((Inc-1)*2%8)+1;Inc,SQR(Inc)
And the ENTER statement would look like this:

G W N =

Data Storage and Retrieval 7-25

ENTER QPath, ((Inc-1)*2%8)+1;Num(Inc),Sqroot(Inc)

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if you want to serially access some data in
the middle of a file. Suppose, for instance, that you have a BDAT file containing 100 8-byte
records, and each record has a REAL number in it. If you want to read the last 50 data items,
you can position the file pointer to the 51st record and then serially read the remainder of the
file into an array.

100 REAL Array(50)
110 ENTER QRealpath,51; ! 518 is HP-UX record number.
120 ENTER CQRealpath;Array(*)

Accessing Files with Single-Byte Records

With BDAT files, you can define records to be just one byte long (defined records in HP-UX
files are always 1 byte long). In this case, it doesn’t make sense to read or write one record at
a time since even the shortest data type requires two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a,
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode. Random OUTPUTSs write as many bytes as the data item requires,
and random ENTERs read enough bytes to fill the variable.

The example below illustrates how you can read and write randomly to one-byte records.

10 INTEGER Int

20 CREATE BDAT "BYTE",100,1
30 ASSIGN ©Bytepath TO "BYTE"
40 OUTPUT €Bytepath,1;3.67
50 OUTPUT €Bytepath,9;3

60 OUTPUT €Bytepath,11;"string"
70 ENTER €@Bytepath,9;Int

80 ENTER €@Bytepath,1;Real

90 ENTER €Bytepath,11;Str$
100 PRINT Real

110 PRINT Int

120 PRINT Str$

130 END

3.67
3

string

Note that we had to declare the variable Int as an INTEGER. If we hadn’t, the system would
have given it the default type of REAL and would therefore have required 8 bytes.

7-26 Data Storage and Retrieval

("\\

—

Accessing Directories

A directory is merely an index to the files on a mass storage media. The HP Instrument
BASIC language has several features that allow you to obtain information from the directories
of mass storage media. This section presents several techniques that will help you access this
information.

To get a catalog listing of a directory, you will use the CAT statement. Executing CAT with
no media specifier directs the system to get a catalog of the current system mass storage
directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage.
Here are some examples:

CAT ":HP9122,700"

CAT ":,700,0"

CAT "\BLP\PROJECTS" DOS Volumes Only
CAT "/WORK/PROJECTS" HFS Volumes Only

Both of the preceding statements sent the catalog listing to the current system printer (either
specified by the last PRINTER IS statement, or defaulting to CRT).

Sending Catalogs to External Printers

The CAT statement normally directs its output to the current PRINTER IS device. The CAT
statement can also direct the catalog to a specified device, as shown in the following examples:

CAT TOD #726
CAT TD #External prtr
CAT TD #Device_selector

The paramenter following the # is known as a device selector.

Data Storage and Retrieval 7-27

Using a Printer

Sooner or later a program needs to print something. A wide range of printers are
supported by HP Instrument BASIC. This chapter covers the statements commonly used to
communicate with external printers.

Selecting the System Printer

The PRINT statement normally directs text to the screen of the CRT where one is present on
the instrument. Text may be re-directed to an external printer by using the PRINTER IS
statement.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

Device Selectors

A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified by
the interface select code. In this case, the device selector is the same as the interface select
code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRINT statements to the CRT, use one of the following statements:

PRINTER IS 1
PRINTER IS CRT

These statements define the screen of the CRT to be the system printer. Until changed,

the output of PRINT statements will appear on the screen of the CRT. (See your
instrument-specific HP Instrument BASIC manual for information regarding the CRT display
usage.)

Note In order to view data on the CRT of some host instruments running HP
Instrument BASIC, you may need to allocate a display partition. Refer to
your instrument-specific HP Instrument BASIC manual for information on
display partitions.

When more than one device can be connected to an interface, such as the internal HP-IB
interface (interface select code 7), the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information is the primary address.

Using a Printer 8-1

Using Device Selectors to Select Printers

A device selector is used by several different statements. In each of the following, the numeric
expressions are device selectors.

PRINTER IS 701 Specifies a printer with interface select code 7 and primary address

PRINTER IS PRT 01 (PRT is a numeric function whose value is always 701).

PRINTER IS 1407 Specifies a printer with interface select code 14 and primary
address 07.

CAT TO #701 Prints a disc catalog on the printer at device selector 701.

LIST #701 Lists the program in memory to a printer at 701.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or
REAL variables may be used.

PRINTER IS Hal
CAT TO #Dog

The following three-letter mnemonic functions have been assigned useful values.

Mnemonic Value
PRT 701
KBD 2
CRT 1

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An I/O path name
may be assigned to the printer; the printer is subsequently referenced by the I/O path name.

Using Control Characters and Escape Sequences

Most ASCII characters are printed on an external printer just as they appear on the screen
of the CRT. Depending on your printer, there will be exceptions. Several printers will also
support an alternate character set: either a foreign character set, a graphics character set, or
an enhanced character set. If your printer supports an alternate character set, it usually is
accessed by sending a special command to the printer.

8-2 Using a Printer

m

~—"

-/

Control Characters

In addition to a “printable” character set, printers usually respond to control characters.
These non-printing characters produce a response from the printer. The following table shows
some of the control characters and their effect.

Typical Printer Control Characters

Printer’s Response Control Character ASCII Value
Ring printer’s bell © 7
Backspace one character CETROH) 8
Horizontal tab (€TRUD 9
Line-feed 10
Form-feed 12
Carriage-return) 13

One way to send control characters to the printer is the CHR$ function. Execute the
following:

PRINT CHR$(12)

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer.

Escape-Code Sequences

Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer.

Formatted Printing

For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

When the comma is used to separate items, the printer will print the items on field
boundaries. Fields start in column one and occur every ten columns (columns 1, 11, 21,
31,...). Using the following values in a PRINT statement: A=1.1, B=-22.2, C=3E+5,
D=5.1E+8.

10 PRINT RPT$("1234567890",4)
20 PRINT A,B,C,D

Produces:

1234567830123456783012345678901234567890
1.1 -22.2 300000 5.1E+8

Using a Printer 8-3

Note the form of numbers in a normal PRINT statement. A positive number has a leading
and a trailing space printed with the number. A negative number uses the leading space
position for the “~” sign. This is why the positive numbers in the previous example appear to
print one column to the right of the field boundaries. The next example shows how this form
prevents numeric values from running together.

10 PRINT RPT$("1234567890",4)
20 PRINT A;B;C;D

1234567890123456789012345678901234567890
1.1 -22.2 300000 5.1E+8

Using the semicolon as the separator caused the numbers to be printed as closely together as
the “compact” form allows. The compact form always uses one leading space (except when
the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using
the ability of the PRINT statement to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If each array element contained the value of its subscript, the statement:

PRINT Array(*);

Produces:

0123456789 10 11 12 13 14...

Another method of aligning items is to use the tabbing ability of the PRINT statement.

PRINT TAB(25);-1.414

123456789012345678901234567890123
-1.414

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT
TABXY may be used to specify both the horizontal and vertical position when printing to an
internal CRT.

A more powerful formatting technique employs the ability of the PRINT statement to allow
an image to specify the format.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image
specifies how the printed item should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of
the decimal point.

3.142

8-4 Using a Printer

For each character “D” within the image, one digit is to be printed. Whenever the number

'O contains more non-zero digits to the right of the decimal than provided by the field specifier,
the last digit is rounded. If more precision is desired, more characters can be used within the
image.

PRINT USING "D.10D";PI

3.1415926536

Instead of typing ten “D” specifiers, one for each digit, a shorter notation is to specify a
repeat factor before each field specifier character. The image “DDDDDD” is the same as the
image “6D”.

The image specifier can be included in the PRINT statement or on it’s own line. When the
specifier is on a different line, the PRINT statement accesses the image by either the line
number or the line label.

100 Format: IMAGE 6Z.DD
110 PRINT USING Format;i,B,C
120 PRINT USING 100;D,E,F

Both PRINT statements use the image in line 100.

Numeric Image Specifiers

Several characters may be used within an image to specify the appearance of the printed
value.

Numeric Image Specifiers

U Image

Specifier Purpose

D Replace this specifier with one digit of the number to be printed. If the digit is a
leading zero, print a space. if the value is negative, the position may be used by the
negative sign.

Z Same as “D” except that leading zeros are printed.

E Prints two digits of the exponent after printing the sequence “E+”. This specifier is
equal to “ESZZ”. See the HP Instrument BASIC Language Reference for more details.

K Print the entire number without leading or trailing spaces.

S Print the sign of the number: either a “+” or “”.

M Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

H Similar to K, except the number is printed using the European number format
(comma radix).

R Print the comma (European radix).

* Like Z, except that asterisks are printed instead of leading zeros.

To better understand the operation of the image specifiers examine the following examples

() and results.

Using a Printer 8-5

Examples of Numeric Image Specifiers

Statement Output
PRINT USING "K";33.666 33.666
PRINT USING "DD.DDD";33.666 33.666
PRINT USING "DDD.DD";33.666 33.687
PRINT USING "ZZZ.DD";33.666 033.67
PRINT USING "“22Z";.444 000
PRINT USING "“Z2ZZ"; .555 001
PRINT USING "SD.3DE";6.023E+23 +6.023E+23
PRINT USING "S3D.3DE";6.023E+23 +602.300E+21
PRINT USING "SS5D.3DE";6.023E+23 +60230.000E+19
PRINT USING "H";3121.55 3121,556
PRINT USING "DDRDD";19.95 19,95
PRINT USING "**x%"; 555 *%]

To specify multiple fields within the image, the field specifiers are separated by commas.

Multiple-Field Numeric Image Specifiers

Statement Output
PRINT USING "K,5D,5D"; 100,200,300 100 200 300
PRINT USING "DD,Z2Z,DD";1,2,3 1023

If the items to be printed can use the same image, the image need be listed only once. The
image will then be re-used for the subsequent items.

PRINT USING “5D.DD";3.98,5.95,27.50,139.95

123456789012345678901234567890123
3.98 5.95 27.50 139.95

The image is re-used for each value. An error will result if the number cannot be accurately
printed by the field specifier.
String Image Specifiers

Similar to the numeric field image characters, several characters are provided for the
formatting of strings.

8-6 Using a Printer

String Image Specifiers

Image
Specifier Purpose
A Print one character of the string. If all characters of the string have been printed,
print a trailing blank.
K Print the entire string without leading or trailing blanks.
X Print a space.
“literal” Print the characters between the quotes.

The following examples show various ways to use string specifiers.

PRINT USING "5X,104,2X,10A";"Tom","Smith"

12345678901234567830123456789
Tom Smith

PRINT USING "5X,""John"",2X,104";"Smith"

12345678901234567890123456789
John Smith

PRINT USING """PART NUMBER"",2x,10d4";90001234

12345678901234567890123456789
PART NUMBER 90001234

Additional Image Specifiers

The following image specifiers serve a special purpose.

Additional Image Specifiers

Image
Specifier ‘ Purpose

B Print the corresponding ASCII character. This is similar to the CHR$ function.

Suppress automatic end-of-line (EOL) sequence.
Send the current end-of-line (EOL) sequence; with IO, see the PRINTER IS
statement in the HP Instrument BASIC Language Reference for details on re-defining
the EOL sequence.

/ Send a carriage-return and a linefeed.

@ Send a formfeed.

+ Send a carriage-return as the EOL sequence. (Requires IO)

- Send a linefeed as the EOL sequence. (Requires I0)

For example:
PRINT USING "@,#" outputs a formfeed.
PRINT USING "D,X,34,""OR NOT"",X,B,X,B,B";2,"BE",50,66,69

Using a Printer 8.7

Special Considerations

If nothing prints, check if the printer is ON LINE. When the printer if OFF LINE the
computer and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the
printer to respond. ON TIMEOUT may be used within a program to test for the printer.

Since the printer’s device selector may change, keep track of the locations in the program
where a device selector is used.

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

8-8 Using a Printer

9

Handling Errors

Most programs are subject to errors at run time. This chapter describes how HP Instrument
BASIC programs can respond to these errors, and shows how to write programs that attempt
to either correct the problem or direct the program user to take some sort of corrective action.

There are three courses of action that you may choose to take with respect to errors:
1. Try to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue execution.

3. Do nothing—let the system stop the program when an error happens.

The remainder of this chapter describes how to implement the first two alternatives.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to
implement, and the nature of HP Instrument BASIC is such that this is often a feasible
choice. Upon encountering a run-time error, the computer will pause program execution and
display a message giving the error number and the line in which the error happened, and the
programmer can then examine the program in light of this information and fix things up. The
key word here is “programmer.” If the person running the program is also the person who
wrote the program, this approach works fine. If the person running the program did not write
it, or worse yet, does not know how to program, some attempt should be made to prevent
errors from happening in the first place, or to recover from errors and continue running.

Anticipating Operator Errors

When you write a program, you know exactly what the program is expected to do, and what
kinds of inputs make sense for the problem. Sometimes you overlook the possibility that other
people using the program might not understand the boundary conditions. You have no choice
but to assume that every time a user has the opportunity to feed an input to a program, a
mistake can be made and an error can be caused. You should make an effort to make the
program resistant to errors.

Boundary Conditions

A classic example of anticipating an operator error is the “division by zero” situation.
An INPUT statement is used to get the value for a variable, and the variable is used as a
divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program pauses with an error 31. It is far better to plan for such an
occurrance. One method is shown in the following example.

Handling Errors 9-1

100 INPUT "Miles traveled and total hours",Miles,Hours
110 IF Hours=0 THEN

120 BEEP

130 PRINT "Improper value entered for hours."

140 PRINT "Try again!"

150 GOTO 100

160 END IF

170 Mph=Miles/Hours

Trapping Errors

Despite the programmer’s best efforts at screening the user’s inputs in order to avoid errors,
errors will still happen. It is still possible to recover from run-time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR

The ON ERROR statement sets up a branching condition which will be taken any time a
recoverable error is encountered at run time. The branch action taken may be GOSUB,
GOTO, CALL or RECOVER. GOTO and GOSUB are purely local in scope—that is, they are
active only within the context in which the ON ERROR is declared. CALL and RECOVER
are global in scope—after the ON ERROR is setup, the CALL or RECOVER will be executed
any time an error occurs, regardless of subprogram environment.

Choosing a Branch Type

The type of branch that you choose (GOTO vs. GOSUB, etc.) depends on how you want to
handle the error.

m Using GOSUB indicates that you want to return to the statement that caused the error

(RETURN).

s GOTO, on the other hand, may indicate that you do not want to re-attempt the operation
after attempting to correct the source of the error.

ON ERROR Execution at Run-Time

When an ON ERROR statement is executed, HP Instrument BASIC will make sure that the
specified line or subprogram exists in memory before the program will proceed. If GOTO,
GOSUB, or RECOVER is specified, then the line identifier must exist in the current context
(at pre-run). If CALL is used, then the specified subprogram must currently be in memory (at
run-time). In either case, if the system can’t find the given line, error 49 is reported.

ON ERROR Priority

ON ERROR has a priority of 16, which means that it will always take priority over any other
ON-event branch, since the highest user-specifiable priority is 15.

9-2 Handling Errors

Disabling Error Trapping(OFF ERROR)
The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no

branching will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN, ERRLN, ERRL, ERRDS, ERRM$

ERRN is a function which returns the error number which caused the branch to be taken.
ERRN is a global function, meaning it can be used from the main program or from any
subprogram, and it will always return the number of the most recent error.

100 IF ERRN=80 THEN ! Media not present in drive.

110 PRINT "Please insert the ’Examples’ disc,"
120 PRINT "and press the ’Continue’ key (£2)."
130 PAUSE

140 END IF

ERRLN is a function which returns the line number of the program line in which the most
recent error has occurred.

100 IF ERRLN<1280 THEN GOSUB During_init
110 IF (ERRLN>=1280 AND ERRLN<=2440) THEN GOSUB During_main
120 IF ERRLN>2440 THEN GOSUB During_Last

You can use this function, for instance, in determining what sort of situation-dependent action
to take. As in the above example, you may want to take a certain action if the error occurred
while “initializing” your program, another if during the “main” segment of your program, and
yet another if during the “last” part of the program.

Note that program statements using ERRLN may not behave correctly following a renumber
operation. To avoid this problem, use the ERRL function whenever possible (see below).

ERRL is another function which is used to find the line in which the error was encountered;
however, the difference between this and the ERRLN function is that ERRL is a boolean
function. The program gives it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line which caused the error.

100 IF ERRL(1250) OR ERRL(1270) THEN GOSUB Fix_12xx

110 IF ERRL(1470) THEN GOSUB Fix_1470
120 IF ERRL(2450) OR ERRL(2530) THEN GOSUB Fix_24xx

ERRL is a local function, which means it can only be used in the same environment as

the line which caused the error. This implies that ERRL cannot be used in conjunction

with ON ERROR CALL, but it can be used with ON ERROR GOTO and ON ERROR
GOSUB. ERRL can be used with ON ERROR RECOVER only if the error did not occur in a
subprogram which was called by the environment which set up the ON ERROR RECOVER.

Line number parameters to ERRL are renumbered properly by a renumber operation.
The ERRL function will accept either a line number or a line label:

1140 DISP ERRL(710)

910 IF ERRL(Compute) THEN Fix_compute

ERRMS is a string function which returns the text of the error which caused the branch to be
taken.

Handling Errors 9-3

100 DISP ERRM$! Display default message.

lk ERROR 31 in 10 Division (or MOD) by zero J

ON ERROR GOSUB

The ON ERROR GOSUB statement is used when you want to return to the program line
where the error occurred.

Note that if you do not correct the problem and subsequently use RETURN, HP Instrument
BASIC will repeatedly re-execute the problem-causing line (which will result in an infinite
loop between the ON ERROR GOSUB branch and the RETURN).

When an error triggers a branch as a result of an ON ERROR GOSUB statement being
active, system priority is set at the highest possible level (16) until the RETURN statement
is executed, at which point the system priority is restored to the value it was when the error
happened.

100 Radical=B#B-4*Ax(
110 Imaginary=0

120 ON ERROR GOSUB Esr
130 Partial=SQRT(Radical)
140 OFF ERROR

350 Esr: IF ERRN=30 THEN

360 Imaginary=1
370 Radical=ABS(Radical)
380 ELSE
390 BEEP
400 DISP "Unexpected Error (";ERRN;")"
410 PAUSE
420 END IF
430 RETURN
Note You cannot trap errors with ON ERROR while in an ON ERROR GOSUB

service routine.

ON ERROR GOTO

The ON ERROR GOTO statement is often more useful than ON ERROR GOSUB, especially
if you are trying to service more than one error condition. However, ON ERROR GOTO does
not change system priority.

As with ON ERROR GOSUB, one error service routine can be used to service all the error
conditions in a given context. By testing both the ERRN (what went wrong) and the ERRLN
(where it went wrong) functions, you can take proper recovery actions.

One advantage of ON ERROR GOTO is that you can use another ON ERROR statement
in the service routine (which you cannot use with ON ERROR GOSUB). This technique,
however, requires that you re-establish the original error service routine after correcting any

9-4 Handling Errors

®

errors (by re-executing the original ON ERROR GOTO statement). The disadvantage is that
more programming may be necessary in order to resume execution at the appropriate point
after each error service.

ON ERROR CALL

ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered, regardless of the current context. System
priority is set to level 17 inside the subprogram, and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

As with ON ERROR GOSUB, you will generally use the ON ERROR CALL statement when

you want to return to the program where the error occurred.

Remember that if you do not correct the problem, the SUBEXIT statement will repeatedly
re-execute the problem-causing line (which will result in an infinite loop between the ON
ERROR CALL branch and the SUBEXIT).

Note You cannot trap errors with ON ERROR while in an ON ERROR CALL

service routine.

Using ERRLN and ERRL in Subprograms

You can use the ERRLN function in any context, and it returns the line number of the most
recent error. However, the ERRL function will not work in a different environment than

the one in which the ON ERROR statement is declared. For instance, the following two
statements will only work in the context in which the specified lines are defined:

100 IF ERRL(40) THEN GOTO Fix40
100 IF ERRL(Line_label) THEN Fix_line_label

The line identifier argument in ERRL will be modified properly when the program is
renumbered (such as explicitly by REN or implicitly by GET); however, that is not true of
expressions used in comparisons with the value returned by the ERRLN function.

So when using an ON ERROR CALL, you should set things up in such a manner that the line
number either doesn’t matter, or can be guaranteed to always be the same one when the error
occurs. This can be accomplished by declaring the ON ERROR immediately before the line in
question, and immediately using OFF ERROR after it.

Handling Errors 9-5

5010
5020
5030

7020
7030
7040
7050
7060
7080
7090
7100
7120
7130
7140
7160
7170
7180
7190
7200
7210
7220

ON ERROR CALL Fix_disc
ASSIGN QFile TO "Data_file"
OFF ERROR

SUB Fix_disc
SELECT ERRN
CASE 80
DISP "No disc in drive -- insert disc and continue"
PAUSE
CASE 83
DISP "Write protected -~ fix and continue"”
PAUSE
CASE 85
DISP "Disc not initialized -- fix and continue"
PAUSE
CASE 56
DISP "Creating Data_file"
CREATE BDAT "Data_file",20
.CASE ELSE
DISP "Unexpected error "' ;ERRN
PAUSE
SUBEND

ON ERROR RECOVER

The ON ERROR RECOVER statement sets up an immediate branch to the specified

line whenever an error occurs. The line specified must be in the context of the ON ...
RECOVER statement. ON ERROR RECOVER is global in scope—it is active not only in
the environment in which it is defined, but also in any subprograms called by the segment in

which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system
will restore the context of the program segment which actually set up the branch, including its

system priority, and will resume execution at the given line.

3250
3260
3270
3280

ON ERROR RECOVER Give_up
CALL Model_universe

DISP "Successfully completed"
STOP

3280 Give_up: DISP "Failure ";ERRN

3300

END

9-6 Handling Errors

®

10

Keyword Guide to Porting

N]

The following sections summarize the HP Instrument BASIC keywords by categories. All
keywords are used by both HP Instrument BASIC and HP Series 200/300 BASIC languages,
although some features of certain keywords are not supported by HP Instrument BASIC.
Where differences exist between HP Instrument BASIC and recent versions of HP Series
200/300 BASIC the most significant discrepancies are listed. This chapter is intended only
as a quick reference to the keywords and their compatibility. For detailed information, refer
to HP Instrument BASIC Keyword Reference and your HP Series 200/300 BASIC Language
Reference Manual.

Keyword Guide to Porting 10-1

Program

HP BASIC Function

HP Imstrument BASIC

Entry/Editing
LIST

REM and !

Lists program lines to the system
printer.

Allows comments on program lines.

No support for softkey
listing.

Full support.

Debugging
ERRL

ERRLN

ERRMS$

ERRN

Indicates whether an error occurred
during execution of a specified line.

Returns the program-line number of the

most recent error.

Returns the text of the last error
message.

Return the most recent program
execution error.

No support for TRANSFER
or Data Communications

No support for TRANSFER,
Data Communications,

CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or
softkeys.

Memory Allocation

COM

DIM

INTEGER

REAL

Dimensions and reserves memory for
variables in a common area for access
by more than one context.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for
INTEGER variables and arrays.

Dimensions and reserves memory for
full-precision (REAL) variables and

No support for OPTION
BASE, BUFFER,
COMPLEX, LOAD, or
subarrays.

No support for OPTION
BASE, BUFFER,
COMPLEX, or subarrays.

No support for OPTION
BASE, BUFFER, or
subarrays.

No support for OPTION
BASE, BUFFER, or

arrays. subarrays.

Relational Operators

= Equality Full Support.
<> Inequality Full Support.
< Less than Full Support.
<= Less than or equal to Full Support.
> Greater than Full Support.
>= Greater than or equal to Full Support.

10-2 Keyword Guide to Porting

9

Program HP BASIC Function HP Instrument BASIC
General Math
+ Addition operator Full Support.
- Subtraction operator Full Support.
X Multiplication operator Full Support.
/ Division operator Full Support.
" Exponentiation operator Full Support.
ABS Returns an argument’s absolute value. No support for COMPLEX.
DIV Divides one argument by another and Full support.
returns the integer portion of the
quotient.
DROUND Returns the value of an expression, Full support.
rounded to a specified number of digits.
EXP Raises the base e to a specified number No support for COMPLEX.
of digits.
FRACT Returns the fractional portion of an Full support.
expression.
INT Returns the integer portion of an Full support.
expression.
LET Assigns values to variables. Full support.
LGT Returns the logarithm (base 10) of an No support for COMPLEX.
argument
LOG Returns the natural logarithm (base) No support for COMPLEX.
of an argument
MAX Returns the largest value in a list of Full support.
arguments
MAXREAL Returns the largest number available. Full support.
MIN Returns the smallest value in a list of Full support.
arguments
MINREAL Returns the smallest number available. Full support.
MOD Returns the remainder of integer Full support.
division.
MODULO Returns the modulo of division. Full support.
PI Returns an approximation of pi. Full support.
PROUND Returns the value of an expression, Full support.

rounded to the specified power of ten.

Keyword Guide to Porting 10-3

Program

HP BASIC Function

HP Instrument BASIC

General Math (continued)

RANDOMIZE Modifies the seed used by the RND Full support.
function.
RND Returns a pseudo-random number. Full support.
SGN Returns the sign of an argument. Full support.
SQRT (or SQR) Returns the square root of an argument No support for COMPLEX.
Binary Functions
BINAND Returns the bit-by-bit logical-and of Full support.
two arguments.
BINCMP Returns the bit-by-bit complement of Full support.
an argument.
BINEOR Returns the bit-by-bit exclusive-or of Full support.
two arguments.
BINIOR Returns the bit-by-bit inclusive-or of Full support.
two arguments.
BIT Returns the state of a specified bit of Full support.
an argument.
ROTATE Returns a value obtained by shifting Full support.
an argument’s binary representation
a number of bit positions, with
wrap-around.
SHIFT Returns a value obtained by shifting Full support.
an argument’s binary representation
a number of bit positions, without
wrap-around.
Trigonometric
ACS Returns the arccosine of an argument. No support for COMPLEX.
ASN Returns the arcsine of an argument. No support for COMPLEX.
ATN Returns the arctangent of an argument. No support for COMPLEX.
COS Returns the cosine of an argument. No support for COMPLEX.
DEG Sets the degrees mode. Full support.
RAD Sets the radians mode. Full support.
SIN Returns the sine of an argument. No support for COMPLEX.
TAN Returns the tangent of an argument. No support for COMPLEX.

10-4 Keyword Guide to Porting

Program

HP BASIC Function

HP Imstrument BASIC

String Operations

&
CHR$

DVAL

DVALS$

IVAL

IVALS

LEN

LWC8

NUM

POS

REVS

RPTS

TRIMS$

UPC$

VAL

VALS

Concatenates two string expressions

Converts a numeric value into an
ASCII character.

Converts an alternate-base
representation into a numeric value.

Converts a numeric value into
alternate-base representation.

Converts an alternate-base
representation into an INTEGER
number.

Converts an INTEGER into
alternate-base representation.

Returns the number of characters in a
string expression.

Returns the lowercase value of a string
expression.

Returns the decimal value of the first
character in a string.

Returns the position of a string within
a string expression.

Reverses the order of the characters in
a string expression.

Repeats the characters in a string
expression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression
representing a specified numeric value.

Full support.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

STANDARD lexical order is

ASCII
Full support.

Full support.

Full support.

Full support.

Full support.

STANDARD lexical order is

ASCII

Full support.

Full support.

Keyword Guide to Porting 10-5

Program

HP BASIC Function

HP Instrument BASIC

Logical Operators

AND Returns 1 or 0 based on the logical Full support.
AND of two arguments.
EXOR Returns 1 or 0 based on the logical Full support.
exclusive-or of two arguments.
NOT Returns 1 or 0 based on the logical Full support.
complement of an argument.
OR Returns 1 or 0 based on the logical Full support.
inclusive-or of two arguments.
Mass Storage
ASSIGN Assigns an I/O path name and No support for BUFFER,
attributes to a file. BYTE, WORD, CONVERT,
RETURN, PARITY,
DELAY, and SRM. The
device selector must be a
single I/O device or mass
storage file.
CAT Lists the contents of the mass storage = No support for SRM,
media’s directory. NAMES, EXTEND,
PROTECT, SELECT, SKIP,
COUNT, NO HEADER, or
PROG files.
COPY Provides a method of copying mass Full support.
storage files and volumes.
CREATE Creates an HP-UX or MS-DOS-type No support for SRM.
file on the mass storage media.
CREATE ASCII Creates an ASCII-type file on the mass No support for SRM.

CREATE BDAT

CREATE DIR

GET

INITIALIZE

MASS STORAGE IS/ MSI

PURGE

storage media.

Creates an BDAT-type file on the mass
storage media.

Creates an HFS or MS-DOS-type
directory on the mass storage media.

Reads an ASCII file into memory as a
program.

Formats a mass storage media and
places a LIF or DOS directory on the
media.

Specifies the default mass storage
device.

Deletes a file entry from the directory.

No support for SRM.

No support for SRM.

No support for SRM.

No support for EPROM.

No support for SRM,
DCOMM, BUBBLE, or
EPROM.

No support for SRM.

10-6 Keyword Guide to Porting

()

~

Program

HP BASIC Function

HP Instrument BASIC

Mass Storage (continued)
RENAME

SAVE/ RE-SAVE

Changes a file’s name.

Creates an ASCII file and copies
program lines from memory into the
file.

No support for SRM.
No support for SRM.

Program Control

CALL

DEF FN/ FNEND
END

FN

FOR ... NEXT
GOSUB

GOTO

IF ... THEN ELSE
LOOP/ EXIT IF/ END
LOOP

PAUSE

REPEAT ... UNTIL

RETURN

SELECT ... CASE

STOP

Transfers program execution to a
specified subprogram and passes
parameters.

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program
segment.

Invokes a user-defined function.

Defines a loop which is repeated a
specified number of times.

Transfers program execution to a
specified subroutine.

Transfers program execution to a
specified line.

Provides a conditional execution of a
program segment,.

Provides looping with conditional exit.

Suspends program execution.

Allows execution of a program segment
until the specified condition is true.

Transfers program execution from a
subroutine to the line following the
invoking GOSUB.

Allows execution of one program
segment of several.

Terminates execution of the program.

No support for CSUB
subprograms, COMPLEX, or
ON END.

No support for COMPLEX,
BUFFER, NPAR, or
OPTIONAL.

Full support.

No support for COMPLEX.
Full support.

Full support.

Full support.

Full support.

Full support.

No support for ON END or
ON KNOB.

Full support.

Full support.

Full support.

Full support.

Keyword Guide to Porting 10-7

Program HP BASIC Function HP Instrument BASIC

Program Control (continued)

SUB/ SUBEND Defines the bounds of a subprogram. No support for COMPLEX,
OPTIONAL or BUFFER.
SUBEXIT Transfers control from within a Full support.

subprogram to the calling context.

WAIT Causes program execution to wait a Full support.
specified number of seconds.

WHILE Allows execution of a program segment Full support.
while the specified condition is true.

Event-Initiated Branching

ENABLE/ DISABLE Enables or disables even-initiated Full support.
branching (except for ON ERROR, and
ON TIMEOUT).

ENABLE INTR/ DISABLE Enables or disables interrupts defined ~ Bit mask value is ignored.
by the ON INTR statement.

ON CYCLE/ OFF CYCLE Enables or disables an event-initiated Full support.
branch to be taken each time the
specified number of seconds has
elapsed.

ON ERROR/ OFF ERROR Sets up an event-initiated branch when No support for CSUB.
a trappable program error occurs.

ON INTR/ OFF INTR Sets up an event-initiated branch when No support for CSUB.
a specified interface cared generates an
interrupt.
ON KEY ... LABEL/ OFF Sets up an event-initiated branch when No support for CSUB,
KEY a specified softkey is pressed. LINPUT, or ENTER KBD.
Key selector range is 0-9.
ON TIMEOUT/ OFF Sets up an event-initiated branch when No support for CSUB,
TIMEOUT an I/O timeout occurs on a specified PRINTALL IS, PLOTTER
interface. 1S, READIO, WRITEIO, or
SRM.
SYSTEM PRIORITY Set.;s a minimum level of system priority Full support.

for event-initiated branches.

Graphics Control

GCLEAR Clears the graphics area. No support for external
plotter or Multi-Plane
displays.

10-8 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Graphics Plotting
DRAW

MOVE
PEN

Draws a line to a specified point.
Updates the logical pen position.

Selects the pen number on plotting
device.

No support for PIVOT.
No support for PIVOT.

Full support.

HP-IB Control
ABORT

CLEAR

LOCAL

LOCAL LOCKOUT

PASS CONTROL

REMOTE

SPOLL

TRIGGER

Terminates bus activity and asserts
IFC.

Places specified devices in a
device-dependent state.

Returns specified devices to their local
state.

Sends the LLO message, disabling all
device’s front-panel controls.

Passes Active Controller capability to
another device.

Sets specified devices to their remote
state.

Returns a serial poll byte from a
specified device.

Sends the trigger message to specified
devices.

Full support.

No support for Data
Communications Interface.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Clock and Calendar
TIMEDATE

Returns the value of the real-time
clock.

Full support.

General Device
Input/Output

ASSIGN

BEEP

CRT

Associates an I/O path name and
attributes with a mass storage file,
device or group of devices.

Produces an audible tone of a defined
frequency and duration.

Returns the device selector of the CRT.

No support for SRM,
BUFFER, BYTE, WORD,
CONVERT, PARITY,
TRANSFER, LOAD, or
RETURN. I/O path name is
limited to a single device or
mass storage file.

No support for HIL.

Full support.

Keyword Guide to Porting 10-9

Program

HP BASIC Function

HP Instrument BASIC

General Device
Input/Output (continued)

DATA
DISP
ENTER

IMAGE

INPUT

KBD

OUTPUT

PRINT

PRINTER IS

PRT

READ

RESTORE

TAB

TABXY

Specifies data accessible via READ

statements.

Outputs items to the CRT display line.

Inputs data from a device, file or string

to a list of variables.

Provides formats for use with ENTER,
OUTPUT, DISP, and PRINT

operations.

Inputs data from the front-panel
(keyboard) to a list of variables.

Returns the device selector of the

keyboard.

Outputs items to a specified device, file,

string, or buffer.

Outputs items to the current
PRINTER IS device.

Specifies a device for PRINT, CAT,

and LIST statements.

Returns 701, usually the device selector

of external printer.

Inputs data from DATA lists to

variables.

Causes a READ statement to access
the specified DATA statement.

Moves the print position ahead to a
specified point; used within PRINT and

DISP statements.

Specifies the print position on the
internal CRT; used with PRINT

statements.

Full support.

No support for COMPLEX.

No support for COMPLEX,
BUFFER, TRANSFER,
CRT as source, or SRM.

Full support.

No support for COMPLEX
or specific keys.

Full support.

No support for COMPLEX,
BUFFER, TRANSFER, or
SRM.

No support for COMPLEX.

No support for DELAY, or
SRM.

Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.

10-10 Keyword Guide to Porting

Program

HP BASIC Function HP Instrument BASIC

Display and Keyboard
Control

CLEAR SCREEN/ CLS
CRT

KBD

Clears the alpha display screen. Full support.

Returns 1, which is the select code of Full support.
the CRT display.

Returns 2, which is the select code of Full support.
the keyboard.

Array Operations
BASE

RANK

SIZE

Returns the lower bound of a dimension Full support.
of an array.

Returns the number of dimensions in Full support.
an array.

Returns the number of elements in a Full support.
dimension of an array.

Keyword Guide to Porting 10-11

Index

A

ABS function, 3-7

ACS function, 3-8

Actual values, 6-5

Anticipating Operator Errors, 9-1

Arbitrary Exit Points, 2-8

Arithmetic Functions, 3-7

Arithmetic Operators, 3-3

Array Element, Assigning an Individual, 4-5

Array, four-dimensional, 4-4

Array, Planes of a Three-Dimensional REAL, 4-2

Array, Printing an Entire, 4-7

Arrays, Extracting Single Values From, 4-6

Arrays, Filling, 4-6

Arrays, Passing Entire, 4-7

Arrays, Printing, 4-6

Arrays, Some Examples of, 4-2

Arrays, Storage and Retrieval of, 7-3

Arrays, String, 5-2

Array, Three-Dimensional INTEGER, 4-4

Array, Using the READ Statement to Fill an
Entire, 4-6

ASCII and Custom Data Representations, 7-19

ASCII file, 7-9, 7-12-13, 7-15

ASCII File 1/0, Example of, 7-11

ASCII file I/O techniques, 7-11

ASCII files, 7-6

ASCII Files, A Closer Look at Using, 7-11

ASCII Files, Data Representations in, 7-12

ASCII Files, Formatted ENTER with, 7-16

ASCII Files, Formatted OUTPUT with, 7-14

ASCII file type, 7-13

ASCII format, 7-17

ASN function, 3-8

Assigning an Individual Array Element, 4-5

Assigning Variables, 3-2

ASSIGN statement, 7-8

ATN function, 3-8

Attributes, Assigning, 7-9

Base Conversion Functions, 3-10

BASE function, 4-5

BASIC Programs, Trapping Errors with, 9-2
BDAT and HP-UX Files, A Closer Look at, 7-16

BDAT and HP-UX Files, Reading Data From, 7-
23

BDAT file, 7-7-8, 7-11, 7-15, 7-17-19, 7-21

BDAT files, 7-6, 7-9, 7-13

BDAT File System Sector, 7-19

BDAT Internal Representations (FORMAT OFF),
7-17

BINAND function, 3-8

Binary Functions, 3-8

BINCMP function, 3-8

BINEOR function, 3-8

BINIOR function, 3-8

BIT function, 3-8

Boundaries, keywords that define, 2-4

Boundary Conditions, 9-1

Branch Type, Choosing a, 9-2

C

CALL statement, 6-1-2, 6-9

Case conversion, 5-8

CASE ELSE statement, 2-4, 2-7

CASE statement, 2-4, 2-7

Chaining Programs, 2-11

Chapter Previews, 1-1

Characters, Control, 8-3

CHRS string function, 5-7

COM blocks, 6-7

COM Blocks, Hints for Using, 6-8
Communication, Program/Subprogram, 6-4
COM statement, 2-4, 2-12-13, 4-1, 4-4, 5-2, 7-9
COM vs. Pass Parameters, 6-7
Concatenation, String, 5-3

Conditional Branching, 2-4

Conditional execution, 2-3

Conditional segment, 2-3

Conditional Segments, Multiple-Line, 2-5
Context Switching, 6-9

Control Characters, 8-3

CONT statement, 2-2

Conversion, Case, 5-8

Conversion, Number-Base, 5-9
Conversions, Implicit Type, 3-2

COS function, 3-8

CREATE BDAT statement, 7-20
CREATE statement, 7-11

CRT function, 3-10

index-1

DATA and READ Statements, Using, 7-2

Data From a File, Reading String, 7-24

Data From BDAT and HP-UX Files, Reading, 7-
23

Data in Programs, Storing, 7-1

Data Input by the User, 7-2

Data in Variables, Storing, 7-1

Data Pointer, Moving the, 7-4

Data Representations, ASCII and Custom, 7-19

Data Representations Available, 7-16

Data Representations in ASCII Files, 7-12

Data Representations with DOS Files, 7-19

Data Representations with HP-UX Files, 7-19

DATA statement, 2-4, 4-6, 6-9, 7-1

Data Storage and Retrieval, 7-1

Data Type, INTEGER, 3-1

Data Type, REAL, 3-1

Data, Writing, 7-22

Date Functions, Time and, 3-9

Deactivating events, 2-11

Declaration of variables, keywords used in the, 2-4

Declaring Variables, 3-1

Default dimensioned length of a string, 5-1

Default mass storage device, 7-7

DEF FN statement, 2-4, 6-4, 6-10

Defined Records, 7-20

Degradation, rate, 7-13

Degrees, 3-8

DEG statement, 3-8, 6-9

Deleting Subprograms, 6-11

DEL LN statement, 6-11

Determining Error Number and Location, 9-3

Device selector, 8-1

Device selectors, using, 8-2

Dimensioning, Problems with Implicit, 4-4

DIM statement, 2-4, 3-1, 4-1, 5-2

DISABLE statement, 2-11, 9-3

Disabling Error Trapping (OFF ERROR), 9-3

Disabling Events, 2-11

DOS files, 7-6

DOS Files, Data Representations with, 7-19

Double-Subscript Substrings, 5-5

DROUND function, 3-9

DVAL function, 3-10, 5-9

DVALS string function, 5-9

Dyadic operator, 3-5

E

Editing Subprograms, 6-10
ENABLE statement, 2-11

END IF statement, 2-4

END LOOP statement, 2-4
End-of-line (EOL) sequences, 7-9

Index-2

End-Of-Record, 7-21

End-Of-Record (EOR), 7-23

END SELECT statement, 2-4, 2-7

END statement, 2-1, 2-4, 6-2

END WHILE statement, 2-4

ENTER, Random, 7-25

ENTER, Serial, 7-24

ENTER statement, 7-8, 7-14, 7-16, 7-23
ERRL function, 9-3

ERRL in Subprograms, Using ERRLN and, 9-5
ERRLN and ERRL in Subprograms, Using, 9-5
ERRLN function, 9-3

ERRMS string function, 9-3

ERRN function, 9-3

Error Number and Location, Determining, 9-3
Error Responses, Overview of, 9-1

Errors, Anticipating Operator, 9-1

Errors, Handling, 9-1

Errors, Trapping, 9-2

Error Trapping and Recovery, Scope of, 9-2
Error Trapping (OFF ERROR), Disabling, 9-3
Escape-Code Sequences, 8-3

Evaluating Expressions Containing Strings, 5-2
Evaluating Scalar Expressions, 3-3

Evaluation Hierarchy, 5-3

Event-checking, 2-10

Event-initiated branching, 2-1, 2-10
Event-initiated RECOVER, statement, 6-10
Events, Disabling, 2-11

Events, Types of, 2-10

EXIT IF statement, 2-4, 2-8

EXP function, 3-7

Exponential Functions, 3-7

Expressions as Pass Parameters, 3-5
Expressions, hierarchy for, 3-3

External Printer, Using the, 8-2

9,

M

F

File Access, A Closer Look at General, 7-8
File Input and Output, 7-5

File pointer, 7-15

File specifiers, 7-7

File Types, Brief Comparison of Available, 7-5
FNEND statement, 2-4, 6-11

FOR ... NEXT structure, 2-7

Formal parameter lists, 6-4, 6-6

FORMAT attribute, 7-9

FORMAT attributes, 7-9

FORMAT OFF statement, 7-9, 7-17
FORMAT ON attribute, 7-14

FORMAT ON statement, 7-9, 7-16

Formatted ENTER with ASCII Files, 7-16
Formatted OUTPUT with ASCII Files, 7-14 m
Formatted Printing, 8-3

FOR statement, 2-4

Four-dimensional array, 4-4

FRACT function, 3-7

Function, ABS, 3-7

Function, ACS, 3-8

Function and a Subprogram, Difference, 6-2

Function, ASN, 3-8

Function, ATN, 3-8

Function, BINAND, 3-8

Function, BINCMP, 3-8

Function, BINEOR, 3-8

Function, BINIOR, 3-8

Function, BIT, 3-8

Function, COS, 3-8

Function, CRT, 3-10

Function, DROUND, 3-9

Function, DVAL, 3-10, 5-9

Function, ERRL, 9-3

Function, ERRLN, 9-3

Function, ERRN, 9-3

Function, EXP, 3-7

Function, FRACT, 3-7

Function, INT, 3-7

Function, IVAL, 3-10, 5-9

Function, KBD, 3-10

Function, LGT, 3-7

Function, LOG, 3-7

Function, MAX, 3-9

Function, MAXREAL, 3-7

Function, MIN, 3-9

Function, MINREAL, 3-7

Function, NUM, 5-7

Function, PI, 3-8

Function, PROUND, 3-9

Function, PRT, 3-10

Function, RND, 3-9

Function, ROTATE, 3-8

Functions and String Functions, REAL Precision,
6-3

Functions, Arithmetic, 3-7

Functions, Base Conversion, 3-10

Functions, Binary, 3-8

Functions, Exponential, 3-7

Functions, General, 3-10

Function, SGN, 3-7

Function, SHIFT, 3-8

Function, SIN, 3-8

Functions, Limit, 3-9

Functions, Numerical, 3-7

Function, SQR, 3-7

Function, SQRT, 3-7

Functions, String, 5-7

Functions, String-Related, 5-6

Functions, Subprograms and User-Defined, 6-1

Functions, Time and Date, 3-9

Functions, Trigonometric, 3-8

Function, TAN, 3-8
Function, TIMEDATE, 3-9
Function, VAL, 5-7
Function, VALS$, 7-15

G

General File Access, A Closer Look at, 7-8
General Functions, 3-10

GET statement, 2-11-13, 6-8

GET, Using, 2-11

GOSUB statement, 2-2, 6-9

GOTO statement, 2-2, 2-4, 6-9

H

Halting Program Execution, 2-1

Handling Errors, 9-1

Hierarchy, Evaluation, 5-3

Hierarchy for expressions, 3-3

Hierarchy, Math, 3-3

HP-UX file, 7-9, 7-20

HP-UX files, 7-6

HP-UX Files, Data Representations with, 7-19

IF ... THEN ... ELSE statement, 2-5
IF ... THEN statement, 2-4

IF ... THEN structure, 2-8

IF statement, 2-4

Image Specifiers, Additional, 8-7
Image Specifiers, Numeric, 8-5

Image Specifiers, String, 8-6

Images, Using, 8-4

Implicit Dimensioning, Problems with, 4-4
Implicit Type Conversions, 3-2
Individual Array Elements, Using, 4-5
Infinite loop, 2-10

Initialization, Variable, 6-10

INPUT statement, 7-2

Inserting Subprograms, 6-10
INTEGER data type, 3-1, 4-1
INTEGER statement, 2-4, 4-1, 4-4
Interface select code, 8-1

INT function, 3-7

1/0O path names, 7-8

I/O Path, Opening an, 7-8

I/O Paths, Closing, 7-10

I/O techniques, ASCII file, 7-11

IVAL function, 3-10, 5-9

IVALS string function, 5-9

K

KBD function, 3-10
Keywords that define boundaries, 2-4
Keywords that define program structures, 2-4

Index-3

Keywords used in the declaration of variables, 2-4
Keywords used to identify lines that are literals,
2-4

L

Length header, string variable’s, 7-14

LET statement, 3-2, 7-1

LGT function, 3-7

LIF file, 7-8

Limit Functions, 3-9

Linear flow, 2-1

Literals, keywords used to identify lines that are,
2-4

LOAD statement, 6-8

LOG function, 3-7

Loop counter, 2-7

LOOP ... END LOOP structure, 2-8

Loop iterations, conditional, 2-8

Loop iterations, fixed, 2-8

Loop iterations formula, 2-7

LOOP statement, 2-4, 2-8

LWCS string function, 5-8

Manual Organization, 1-1

Mass storage files, 7-1

MASS STORAGE IS statement, 7-8
Math Hierarchy, 3-3

MAX function, 3-9

MAXREAL function, 3-7

Merging Subprograms, 6-11

MIN function, 3-9

MINREAL function, 3-7

Monadic operator, 3-5

MOVELINES statement, 6-11

Moving the Data Pointer, 7-4
Multiple-Field Numeric Image Specifiers, 8-6
Multiple-Line Conditional Segments, 2-5

Nested constructs, 2-5

NEXT statement, 2-4

Null string, 5-1

Number-Base Conversion, 5-9

Number builder routine, 7-13

Numerical Functions, 3-7

Numeric Arrays, 4-1

Numeric Computation, 3-1

Numeric data items, 7-12

Numeric Data Types, 3-1

Numeric Expressions, Strings in, 3-6
Numeric Image Specifiers, 8-5

Numeric Image Specifiers, Examples of, 8-5
Numeric Image Specifiers, Multiple-Field, 8-6

Index-4

Numeric-to-String Conversion, 5-7
NUM function, 5-7

o

OFF-event, 2-11

OFF KEY statement, 2-11
One-dimensional array, 4-1

ON ... event statement, 2-10

ON ERROR branching, 9-3

ON ERROR CALL, A Closer Look At, 9-5
ON ERROR Execution at Run-Time, 9-2
ON ERROR GOSUB, 9-4

ON ERROR GOTO, A Closer Look At, 9-4
ON ERROR Priority, 9-2

ON ERROR RECOVER, A Closer Look At, 9-6
ON ERROR statement, 2-10

ON-event, 2-11

ON-event statement, 2-10

ON INTR statement, 2-10

ON KEY statement, 2-10, 6-10

ON TIMEOUT statement, 2-10, 8-8
Operator, dyadic, 3-5

Operator Errors, Anticipating, 9-1
Operator, monadic, 3-5

Operator, relational, 3-5

Operators, 3-5

OUTPUT, Random, 7-23

OUTPUT, Serial, 7-23

OUTPUT statement, 2-3, 7-14-15, 7-22
Overhead in ASCII data files, reducing the, 7-14

-]

Parameter Lists, Formal, 6-4

Parameters, Expressions as Pass, 3-5

Parameters Lists, 6-4

Parameters passed by reference, 3-2

Parameters passed by value, 3-2

Passing by Value vs. Passing By Reference, 6-5

Passing Entire Arrays, 4-7

Pass parameter lists, 6-5

Pass Parameters, COM vs., 6-7

Pass Parameters, Expressions as, 3-5

PAUSE statement, 2-2

PI function, 3-8

Planes of a Three-Dimensional REAL Array, 4-2

Pointer, Moving the Data, 7-4

Precision Functions and String Functions, REAL,
6-3

Printer Control Characters, 8-3

PRINTER IS device, 4-7

PRINTER IS statement, 8-1

Printer, system, 8-1

Printer, Using a, 8-1

Printer, Using the External, 8-2

Printing Arrays, 4-6

®

»

»

PRINT TAB statement, 8-4

PRINT TABXY statement, 8-4

Priority, ON ERROR, 9-2

Program counter, 2-2

Program flow, 2-1

Programs, chaining, 2-11

Program structures, keywords that define, 2-4
Program/Subprogram Communication, 6-4
Program-to-Program Communication, 2-12
Prohibited Statements, 2-4

PROUND function, 3-9

PRT function, 3-10

Radians, 3-8

RAD statement, 3-8, 6-9

Random access, 7-14, 7-16

Random ENTER, 7-25

RANDOMIZE statement, 3-9

Random Number Function, 3-9

Random OUTPUT, 7-23

Random vs. Serial Access, 7-17

RANK function, 4-5

Rate degradation, 7-13

Reading Data From BDAT and HP-UX Files, 7-23

Reading String Data From a File, 7-24

READ statement, 4-6, 7-1

READ Statement to Fill an Entire Array, Using
the, 4-6

REAL data type, 3-1, 4-1

REAL Data Type, 3-1

REAL Precision Functions and String Functions,
6-3

REAL statement, 2-4, 4-1, 4-4

Record Length (BDAT Files Only), Choosing A,
7-21

Records, Defined, 7-20

Record Size (BDAT Files Only), Specifying, 7-20

RECOVER statement, 6-9

RECOVER Statement, Subprograms and the, 6-
10

Recovery, Scope of Error Trapping and, 9-2

Recursion, 6-11

Reducing the overhead in ASCII data files, 7-14

Reference, Pass by, 6-5

Relational Operations, 5-3

Relational operator, 3-5

REM statement, 2-4

REPEAT ... UNTIL structure, 2-7

REPEAT statement, 2-4, 2-8

Repeat, String, 5-8

RESTORE statement, 7-4

RETURN stack, 6-9

RETURN statement, 2-2

Reverse, String, 5-8

REVS string function, 5-8

ROTATE function, 3-8

Rounding problem, 3-2

RPTS$ string function, 5-8

RUN command, 6-1

Run-Time, ON ERROR Execution at, 9-2

SAVE statement, 7-1

Scalar Expressions, Evaluating, 3-3

Scope of Error Trapping and Recovery, 9-2

SELECT constructs, 2-6

Selection, 2-3

SELECT statement, 2-4, 2-6

Serial access, 7-16

Serial ENTER, 7-24

Serial OUTPUT, 7-23

Service Routines, Setting Up Error, 9-2

Setting Up Error Service Routines, 9-2

SGN function, 3-7

SHIFT function, 3-8

Simple Branching, 2-2

SIN function, 3-8

Single-Byte Access, 7-26

Single-Subscript Substrings, 5-4

SIZE function, 4-5

Softkeys, Subprograms and, 6-10

Specifiers, Additional Image, 8-7

Specifiers, Numeric Image, 8-5

Specifying Record Size (BDAT Files Only), 7-20

SQRT function, 3-7

STOP statement, 2-1

Storage and Retrieval of Arrays, 7-3

Storage-space efficiency, 7-16

Storing Data in Programs, 7-1

Storing Data in Variables, 7-1

String, 5-1

String Arrays, 5-2

String Concatenation, 5-3

String Data From a File, Reading, 7-24

String, default dimensioned length of a, 5-1

String Function, CHRS, 5-7

String Function, DVALS, 5-9

String Function, ERRMS, 9-3

String Function, IVALS, 5-9

String Function, LWCS$, 5-8

String Function, REVS, 5-8

String Function, RPT$, 5-8

String Functions, 5-7

String Functions, REAL Precision Functions and,
6-3

String Function, TRIMS, 5-8

String Function, UPCS$, 5-8

String Function, VALS, 5-7

String Image Specifiers, 8-6

index-5

String Length, Current, 5-6

String Manipulation, 5-1

String-Related Functions, 5-6

String Repeat, 5-8

String Reverse, 5-8

Strings, Evaluating Expressions Containing, 5-2

Strings in Numeric Expressions, 3-6

String Storage, 5-2

String-to-Numeric Conversion, 5-7

String, Trimming a, 5-8

String variable, 5-1

String variable’s length header, 7-14

SUBEND statement, 2-4, 6-11

SUBEXIT statement, 6-11

Subprogram and User-Defined Function Names,
6-2

Subprogram, Difference Between a User-Defined
Function and a, 6-2

Subprogram Location, 6-2

Subprograms, A Closer Look at, 6-1

Subprograms and Softkeys, 6-10

Subprograms and Subroutines, Differences Be-
tween, 6-2

Subprograms and the RECOVER Statement, 6-10

Subprograms and User-Defined Functions, 6-1

Subprograms, Benefits of, 6-1

Subprograms, Deleting, 6-11

Subprograms, Inserting, 6-10

Subprograms, Merging, 6-11

Subroutine, 2-2

SUB statement, 2-4, 6-1, 6-4, 6-10

Substring Position, 5-6

Substrings, 5-4

Substrings, Double-Subscript, 5-5

Substrings, Single-Subscript, 5-4

System printer, 8-1

System Sector, BDAT File, 7-19

Index-6

T

TAN function, 3-8

Three-Dimensional INTEGER Array, 4-4
Time and Date Functions, 3-9
TIMEDATE function, 3-9

Trapping and Recovery, Scope of Error, 9-2
Trapping Errors, 9-2

Trapping (OFF ERROR), Disabling Error, 9-3
Trigonometric Functions, 3-8

Trimming a String, 5-8

TRIMS string function, 5-8
Two-dimensional, 4-1

Two-Dimensional INTEGER, Array, 4-3
Type Conversions, Implicit, 3-2

U

UNTIL statement, 2-4
UPCS$ string function, 5-8
User-defined formats, 7-17

v

VALS$ function, 7-15

VAL function, 5-7

VALS$ string function, 5-7

Value, Pass by, 6-5

Variable Initialization, 6-10

Variables, Assigning, 3-2

Variables, Declaring, 3-1

Variables, keywords used in the declaration of, 2-4

w

WHILE ... END structure, 2-7
WHILE ... END WHILE structure, 2-8
WHILE statement, 2-4, 2-8

Writing Data, 7-22

(O

»

Contents

e e)

1. Manual Overview

Introduction oo o e e e e e e e e e e 1-1
Manual Organizationo oo 1-1
Chapter Previews o v v v v v v e e e e 1-2
Chapter 2: Interfacing Concepts 1-2
Chapter 3: Directing DataFlow 1-2
Chapter 4: OQutputtingData 1-2
Chapter 5: Entering Data 1-2
Chapter 6: I/0O Path Attributes 1-2
Specific Interfaces oo oo oo 1-2
2. Interfacing Concepts
Terminology«o e e e e e e e e e e e 2-1
Why Do You Need an Interface? 2-2
Electrical and Mechanical Compatibility 2-2
Data Compatibility o000 2-2
Timing Compatibility 2-3
Additional Interface Functions 2-3
Interface Overview00 o000 e 2-4
The HP-IB Interfaceo oo 2-4
The RS-232C Serial Interface 2-5
Data Representations 00000, 2-6
Bitsand Byteso e 2-6
Representing Numbers 2-7
Representing Characters, 2-7
The [/OProcess v v v v v i v v v e 2-8
I/0O Statements and Parameters 2-8
Specifying a Resource 00000 L 2-8
Data Handshakeo v oo 2-8
3. Directing Data Flow

Specifying a Resource0 3-1
String-Variable Names 3-1
Formatted String I/O 3-1
Device Selectors Lo oo s 3-2
Select Codes of Built-In Interfaces 3-2
HP-IB Device Selectorso 3-2
I/OPaths o o i v i s e e e e 3-3
I[/OPath Names o v v v v v v v v v v v 3-3
Re-Assigning I/O PathNames 3-3
ClosingI/OPathNames 3-4

I/O Path Names in Subprograms« 3-4

Contents-1

Assigning I/O Path Names Locally Within Subprograms 34

Passing [/O Names as Parameters 3-5
Declaring I/O Path Names in Common 3-6
Benefits of Using I/O Path Names 3-6
Execution Speed L L L 3-6
Re-Directing Data 3-7
Access to Mass Storage Files 3-7
Attribute Control L 3-7
4. Outputting Data
Introduction 4-1
Free-Field Outputs 4-1
The Free-Field Convention 4-1
Standard Numeric Format 4-1
Standard String Format 4-2
Item Separators and Terminators 4-2
Changing the EOL Sequence 4-5
Using END in Freefield OUTPUT 4-6
Additional Definition L. 4-6
END with HP-IB Interfaces 4-6
Outputs that UseImages 4-7
The OUTPUT USING Statement 4-7
Images e 4-7
Example of UsinganImage 4-8
Image Definitions During Outputs 4-9
NumericImages, 4-9
StringImages 4-12
BinaryImages e 4-13
Special-Character Images 4-14
TerminationImages 4-15
Additional Image Features 4-16
Repeat Factors 4-16
ImageRe-Use 4-17
NestedImages 4-18
END with OUTPUTs that UseImages 4-18
Additional END Definition 4-19
END with HP-IB Interfaces 4-19
5. Entering Data

Free-Field Enters 5-1
Item Separators 5-1
Item Terminators 5-2
Entering Numeric Data with the Number Builder 5-2
Entering String Data 5-5
Terminating Free-Field ENTER Statements 5-7
EOI Termination 5-7
Enters that UseImages 5-8
The ENTER USING Statement 5-9
Images L L e s e e e e e 5-9
Example of an Enter UsinganImage 5-9
Image Definitions During Enter 5-10

Contents-2

9

NumericImages o o o0 oo v oo e e 5-11

StringImages oo e e e e e e 5-12
Ignoring Characters « v o v v 0 o v e e 5-13
BinaryImages0 e e e e e e 5-13
Terminating Enters that UseImages 5-14
Default Termination Conditions 5-14
EOI Re-Definition« o oo v v oo 5-14
Statement-Termination Modifiers 5-15
Additional Image Features00 5-16
Repeat Factors e e . e e e e e e e 5-16
ImageRe-Use o v o v i v v o h e e 5-16
NestedImages v v v v v v v v v v v e e 5-17
I/0 Path Attributes
The FORMAT Attributes« . o o v v v v o o v o 6-1
Specifying I/O Path Attributes 6-3
Changing the EOL Sequence Attribute 6-3
Restoring the Default Attributes 6-4
Concepts of Unified I/O, 6-4
Data-Representation Design Criteria 6-4
I/OPathstoFiles 65
BDAT, HPUX and DOS Files 6-5
ASCII Files o v v v v v i i i v it e d e e 6-6
Data Representation Summary 0., 6-7
Applications of Unified I/O00 6-7
I/O Operations with String Variables 6-7
Outputting Data to String Variables 6-7
Entering Data From String Variables 6-9
Index

Contents-3

)

Manual Overview

Introduction

This manual presents the concepts of computer interfacing that are relevant to programming
in HP Instrument BASIC. Note that not all features described in this manual may be
implemented on your instrument. Please consult your instrument-specific manual for

a description of implemented features. The topics presented herein will increase your
understanding of interfacing the host instrument and external devices and computers with HP
Instrument BASIC programs.

Manual Organization

This manual is organized by topics and is designed as a learning tool, not a reference. The
text is arranged to focus your attention on interfacing concepts rather than to present only a
serial list of the HP Instrument BASIC language I/O statements. Once you have read this
manual and are familiar with the general and specific concepts involved, you can use either
this manual or the HP Instrument BASIC Language Reference when searching for a particular
detail of how a statement works.

This manual is designed for easy access by both experienced programmers and beginners.

Beginners may want to begin with Chapter 2, “Interfacing Concepts”, before reading
about general or interface-specific techniques.

Experienced may decide to go directly to the chapter in your instrument-specific manual

programmers that describes the particular interface to be used. It is also usually helpful to
become familiar with display and keyboard I/O operations, since these are
helpful in seeing results while testing I/O programs.

If you need more background as you read about a particular topic, consult
chapters 3 through 9 for a detailed explanation.

The brief descriptions in the next section will help you determine which chapters you will need
to read for your particular application.

Manual Overview 1-1

Chapter Previews

This manual is intended to provide background and tutorial information for programmers
who have not written HP Instrument BASIC I/O programs before. It presents topics and
programming techniques applicable to all interfaces.

Chapter 2: Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the “why” and “how”
of interfacing. Experienced programmers may also want to skim this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Flow

This chapter describes how to specify which instrument resource is to send data, to or receive
data. The use of device selectors, string variable names, and “I/O path names” in I/0
statements are described.

Chapter 4: Outputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
sections relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6: 1/0 Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is also highly recommended to all readers.

Specific Interfaces

Since each host instrument for HP Instrument BASIC implements the display, keyboard and
other interfaces in slightly different manners, this manual does not cover the operation of
interfaces. For specific details on the operation of interfaces with HP Instrument BASIC,
consult the instrument-specific manual for your host instrument.

1-2 Manual Overview

~

Interfacing Concepts

This chapter describes the functions and requirements of interfaces between the host
instrument and its resources. Concepts in this chapter are presented in an informal manner.
All levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of
this section is to make sure that our terms have the same meanings.

computer

hardware

software

firmware

computer
resource

1/0

output

input

bus

is herein defined to be the processor, its support hardware, and the HP
Instrument BASIC-language system of the host instrument; together these
system elements manage all computer resources.

describes both the electrical connections and electronic devices that make up
the circuits within the computer; any piece of hardware is an actual physical
device.

describes the user-written, BASIC-language programs.

refers to the pre-programmed, machine-language programs that are invoked by
BASIC-language statements and commands. As the term implies, firmware is
not usually modified by BASIC users. The machine-language routines of the
operating system are firmware programs.

is herein used to describe all of the “data-handling” elements of the system.
Computer resources include: internal memory, display, keyboard, and disc
drive, and any external devices that are under computer control.

is an acronym that comes from “Input and Output”; it refers to the process of
copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is computer memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inpuiting data
is also referred to as “entering data” in this manual for the sake of avoiding
confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

Interfacing Concepts 2-1

computer is an extension of these internal data and control buses. The computer
backplane communicates indirectly with the external devices through interfaces
connected to the backplane hardware.

Why Do You Need an Interface?

The primary function of an interface is to provide a communication path for data and
commands between the computer and its resources. Interfaces act as intermediaries between
resources by handling part of the “bookkeeping” work, ensuring that this communication
process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer bus is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The internal hardware has been designed with specific electrical logic levels and drive
capability in mind.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire’s
function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement
as to when the data transfer will occur; and when the transfer does begin the transfer rates
will probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources.

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
The interfaces connect with the computer buses. The peripheral end of the interfaces have
connectors that match those on peripherals.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult requirements to fulfill before exchanging data is that the format and meaning of
the data being sent is identical to that anticipated by the receiving device. Even though some
interfaces format data, most do not; most interfaces merely move data to or from computer
memory. The computer must make the necessary changes, if any, so that the receiving device
gets meaningful information.

2-2 Interfacing Concepts

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process
is known as a “handshake”. Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interfaces is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface vary widely and are
described in the next section of this chapter.

interfacing Concepts 2-3

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the computer. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard
Digital Interface for Programmable Instrumentation. The acronym “HP-IB” comes from
Hewlett-Packard Interface Bus, often called the “bus”.

Data
HP-IB <: 8 >
Interface
Handshake .
Data and 3 2 | Shielded Cable
Control |Hardware § to Device(s)
Backplane and c
100 . 123
Connectors Firmware (&
Control c
£
% ——
o)
N
Logic and
Shield Grounds
8

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity; it is a communication arbitrator that
provides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

2-4 Interfacing Concepts

~

N—

The RS-232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the

data through a two-wire (usually shielded) cable; data is received in this serial format and is
converted back to parallel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

- Backplane
Connectors

D

Data and
Control

100

Block Diagram of the Serial Interface

Serial
Interface
Hardware

Bit—Serial
Data
, (In)
P;;‘;!e' |Paratiet/ [~
Serial

| (uART)

Converter| Handshake

Special Purpose
6

Grounds

7

25—Pin Connector

Shielded Cable
to a Device

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices.

Interfacing Concepts 2-5

Data Representations

As long as data is only being used internally, it really makes little difference how it is
represented; the computer always understands its own representations. However, when data
is to be moved to or from an external resource, the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digi ts), each
of which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the voltage levels to logic levels.

Voltage of
a Point
+5v
\/\ Logic High
Logic Ground P= Logic Low
(ov) t t t, Time
1 2 3

Voitage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65 536 (65 536=216)
different bit patterns can be produced. The computer can also use groups of eight bits at a
time; this size group is known as a byte. With this smaller size of bit group, 256 (256=28%)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-6 Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular

scheme.

Most-Significant Bit

Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0
Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 Value=2 Value=1

Notice that the value of a 1 in each bit position is equal to the power of two of that position.
For example, a 1 in the Oth bit position has a value of 1 (1=2°), a 1 in the 1st position has a
value of 2 (2=21), and so forth. The number that the byte represents is then the total of all
the individual bit’s values.

0x2°=0

1x21=2

1x22=4 Number represented =
0x22=0

1x2=16 244+ 16+ 128 =150
0x2°=0

0x26=0

1x27 =128

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.

100 Number=NUM("A")
110 PRINT " Number = ";Number
120 END

Number = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard. ASCII
stands for “American Standard Code for Information Interchange”. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard
only defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the computer
(bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called the
“extended ASCII” character set.

When the CHRS$ function is used to interpret a byte of data, its argument must be specified
by its binary-weighted value. The single (extended ASCII) character returned corresponds to
the bit pattern of the function’s argument.

Interfacing Concepts 2-7

100 Number=65 ! Bit pattern is "01000001"
110 PRINT " Character is ";

120 PRINT CHR$(Number)

130 END

Printed Result: Character is A

The 1/0 Process

When using statements that move data between memory and internal computer resources, you
do not usually need to be concerned with the details of the operations. However, you may
have wondered how the computer moves the data. This section takes you “behind the scenes”
of 1/O operations to give you a better intuitive feel for how the computer outputs and enters
data.

I/O Statements and Parameters

The I/O process begins when an I/O statement is encountered in a program. The computer
first determines the type of I/O statement to be executed (such as, OUTPUT, ENTER
USING, etc.). Once the type of statement is determined, the computer evaluates the
statement’s parameters.

Specifying a Resource

Each resource must have a unique specifier that allows it to be accessed to the exclusion of
all other resources connected to the computer. The methods of uniquely specifying resources
(output destinations and enter sources) are device selectors, string variable names, and I/0
path names. These specifiers are further described in the next chapter.

For instance, before executing an QOUTPUT statement, the computer first evaluates the
parameter which specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

OUTPUT Dest_parameter;Source_item

ENTER Sourc_parameter;Dest_item

Data Handshake

Each byte (or word) of data is transferred with a procedure known as a data-transfer
handshake (or simply “handshake”). It is the means of moving one byte of data at a time
when the two devices are not in agreement as to the rate of data transfer or as to what point
in time the transfer will begin. The steps of the handshake are as follows.

1. The sender signals to get the receiver’s attention.
2. The receiver acknowledges that it is ready.
3. A data byte (or word) is placed on the data bus.

4. The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

2-8 Interfacing Concepts

~

5. Repeat these steps if more data items are to be moved.

W,

Interfacing Concepts 2-9

3

Directing Data Flow

Data can be moved between computer memory and several resources. These resources include:
s Computer memory

m Internal and external devices

m Mass storage files

This chapter describes in general terms how devices and string variables are specified in
I/0 statements. Each of these topics is covered in more detail in subsequent chapters. This
chapter also describes the use of I/O pathnames in specifying devices for later use in I/0
statements.

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
computer resources. String variables are specified by variable name, while devices can be
specified by either their device selector or a data type known as an I/O path name. This
section describes how to specify these resources in QUTPUT and ENTER statements.

String-Variable Names

Data is moved to and from string variables by specifying the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown below:

200 OUTPUT To_string$;Data_out$; ! ";" suppresses CR/LF.
240 ENTER From_string$;To_string$

Data is always copied to the destination string (or from the source string) beginning at the
first position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

Formatted String 1/0

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements that
use images, the data sent to the string variables can be explicitly formatted before being sent
to (or while being received from) the variable.

Directing Data Flow 3-1

Device Selectors

Devices include an internal CRT, keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Each interface
has a unique number by which it is identified, known as its interface select code.

In order to send data to or receive data from a device, merely specify the select code of its
interface in an OUTPUT or ENTER statement. Examples of using select codes to access
devices are shown below.

OUTPUT 1;"Data to CRT"
ENTER CRT;Crt_line$

HPib_device=722
OUTPUT 722;"F1R1"
ENTER Hpib_device;Reading

The following pages explain select codes and device selectors.

Select Codes of Built-In Interfaces

The internal devices are accessed with the following, permanently assigned interface select
codes.

Note Some host instruments may not contain all of the following interfaces.

Select Codes of Built-In Devices

Permanent

Built-In Interface/Device Select Code
Alpha Display 1
Keyboard 2
Built-in HP-IB interface 7
Built-in serial interface 9

The host instrument may have other built-in interfaces. See your instrument-specific HP
Instrument BASIC manual for information regarding these interfaces and their select codes.

HP-IB Device Selectors

Each device on the HP-IB interface has a primary address by which it is uniquely identified;
each address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device’s address.
Some examples are shown below.

3-2 Directing Data Flow

HP-IB Device Selector Examples

Device
Device Location Selector Example I/0 Statement
interface select code 7, 722 OUTPUT 722;"Data" ENTER 722; Number
primary address 22
interface select code 10, 1001 OUTPUT 1001;"Data" ENTER
primary address 01 1001 ; Number

1/O Paths

All data entered and output via an interface to files or devices is moved through an “I/O
Path.” The I/O paths to devices and mass storage files can be assigned special names called
I/0 path names. I/O paths to strings cannot use I/O path names. The next section describes
how to use I/O path names along with the benefits of using them.

I/O Path Names

An I/O path name is a data type that describes an I/O resource. With HP Instrument
BASIC, you can assign I/O path names to either a device or a data file on a mass storage
device. The following examples show how this is done.

Devices ASSIGN @Device TO 722
Files ASSIGN @File TO "MyFile"

Once assigned, the I/O path names can be used in place of the device selectors to specify the
resource with which communication is to take place. For example:

ASSIGN @Display TO 1 Assigns the I/O path name @Display to the CRT.
OUTPUT @Display;'Data" Sends characters to the display.
ASSIGN @Printer TO 701 Assigns @Printer to HP-IB device 701.

QUTPUT QPrinter;'"Data" Sends characters to the printer.

ASSIGN @Gpio TO 12 Assigns @Gpio to the interface at select code 12.

ENTER QGpio;A_number Enters one numeric value from the interface.

Note HP Instrument BASIC does not support assigning an I/O path name to

multiple devices.

Since an I/O path name is a data type, a fixed amount of memory is allocated for the
variable, similar to the manner in which memory is allocated to other program variables
(integer, real and string). This I/O path information is only accessible to the context in which
it was allocated, unless it is passed as a parameter or appears in the proper COM statements.

Re-Assigning 1/0 Path Names

If an I/O path name already assigned to a resource is to be re-assigned to another resource,
the preceding form of the ASSIGN statement is also used. The resultant action is that the the
I/O path name to the device is implicitly closed. A new assignment is then made just as if the
first assignment never existed.

Directing Data Flow 3-3

100 ASSIGN OPrinter TO 1 ! Initial assignment.

110 OUTPUT ¢Printer;"Datai"

120 !

130 ASSIGN OPrinter TO 701 ! 2nd ASSIGN closes 1st

140 OUTPUT QPrinter;"Data2" ! and makes a new assignment.
150 PAUSE

160 END

The result of running the program is that “Datal” is sent to the CRT, and “Data2” is sent to
HP-IB device 701.
Closing I/O Path Names

A second use of the ASSIGN statement is to ezplicitly close the name assigned to an I/0
path. For example, to close the path name @Printer you would use the following statement:

ASSIGN QPrinter TO *

After executing this statement for a particular I/O path name, the name cannot be used in
subsequent I/O statements until it is reassigned.

I/0 Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
“context” is changed to that of the called subprogram. The statements in ht subprogram only
have access to the data of the new context. Thus, in order to use an I/O path name in any
statement within a subprogram, one of the following conditions must be true:

® The I/O path name must already be assigned within the context (i.e., the same instance of
the subprogram)

® The I/O path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists)

s The I/O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block

The following paragraphs and examples further describe using I/O path names in
subprograms.

Assigning 1/0 Path Names Locally Within Subprograms

Any I/O path name can be used in a subprogram if it has first been assigned to an I/0O path
within the subprogram. A typical example is shown below.

10 CALL Subprogram_x

20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.
60 OUTPUT @Log_device;"Subprogram"
70 SUBEND

When the subprogram is exited, all I/O path names assigned locally within the subprogram
are automatically closed. If the program (or subprogram) that called the exited subprogram

3-4 Directing Data Flow

®

("‘\

U

attempts to use the I/O path name, an error results. An example of this closing local I/O
path naems upon return from a subprogram is shown below.

10 CALL Subprogram_x

11 OUTPUT @Log_device;"Main" ! inserted line
20 END

30 !

40 SUB Subprogram_x

50 ASSIGN OLog_device TO 1 ! CRT.

60 OUTPUT OLog_device;"Subprogram"

70 SUBEND

When the above program is run, error 177, Undefined I/0O path name, occurs in line 11.

Each context has its own set of local variables, which are not automatically accessible to any
other context. Consequently, if the same I/O path name is assigned to I/O paths in separate
coniexts, the assignment local to the context is used while in that context. Upon return to the
calling context, any I/O path names accessible to this context remain assigned as before the
context was changed.

1 ASSIGN €Log_device to 701 ! Inserted line
2 OUTPUT €Log_device;"First Main" ! Inserted line
10 CALL Subprogram_x

11 OUTPUT @Log_device;"Second Main" ! Changed line

20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.

60 OUTPUT QLog_device;"Subprogran"

70 SUBEND

The results of the above program are that the outputs “First Main” and “Second Main”
are directed to device 701, while the output “Subprogram” is directed to the CRT. Notice
that the original assignment of @Log_device made to interface select code 1 was local to the
subprogram.

Passing 1/O Names as Parameters

I/O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference; they cannot be passed by value. The I/0 path names(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGN @Log_device to 701
2 OUTPUT QLog_device;"Firat Main"

10 CALL Subprogram_x(QLog_device) ! Add pass parameter
11 OUTPUT €Log_device;"Second Main"

20 END

30 !

40 SUB Subprogram_x(@Log) ! Add formal parameter

650 ASSIGN €Log TO 1 ! CRT.
60 OUTPUT QLog; ' Subprogram"
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the I/O path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the I/O path name is accessible to both contexts.
In this example, @Log_device remains assigned to interface select code 1; thus, “Subprogram”
and “Second Main” are both directed to the CRT.

Directing Data Flow 3-5

Declaring 1/0 Path Names in Common

An I/O path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

1 COM C@Log_device ! Insert COM statement
3 ASSIGN QLog_device to 701
4 OUTPUT @Log._device;"First Main"

10 CALL Subprogram_x ! Parameters not necessary
11 OUTPUT €Log_device;"Second Main"

20 END

30 !

40 SUB Subprogram_x ! Parameters not necessary
41 COM ¢ Log._device ! Insert COM statement

50 ASSIGN Q@Log_device TO 1 ! CRT.
60 OUTPUT Q@Log_device;"Subprogram"
70 SUBEND

If an I/O path name is common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignement is not “restored” upon exiting the subprogram.
In this example, “First Main” is sent to the HP-IB device 701, but “Subprogram” and
“Second Main” are both directed to the CRT. This is identical to the preceding action when
the I/O path name was passed by reference.

Benefits of Using 1/0 Path Names

Assigning names to I/O paths provide improvements in performance and additional
capabilities over using device selectors. These advantages fall in the following areas:

m Execution speed
® Re-directing data to or from other destinations
m Access to mass storage files

m Attribute control

Execution Speed

When a device selector is used in an I/O statement to specify the I/O path to a device, first
the numeric expression must be evaluated, then the corresponding attributes of the I/O path
must be determined before the I/O path can be used. If an I/O path name is specified in

an OUTPUT or ENTER statement, all of this information has already been determined at
the time the I/O path name was assigned. Thus, an I/O statement containing an I/O path
name executes slightly faster than using the corresponding I/O statement containing a device
selector (for the same set of source-list expressions).

3-6 Directing Data Flow

9

Re-Directing Data

Using numeric-variable device selectors, as with I/O path names, allows a single statement
to be used to move data between the computer and several devices. Simple examples of
re-directing data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1
110 GOSUB Data_out

200 Device=701
210 GOSUB Data_out

410 Data_out: OUTPUT Device;Data$
420 RETURN

Example of Re-Directing with I/O Path Names

100 ASSIGN €Device TO 1
110 GOSUB Data_out

200 ASSIGN @Device TO 9
210 GOSUB Data_out

410 Data_out: OUTPUT @Device;Data$
420 RETURN

The preceding two methods of re-directing data execute in approximately the same amount of
time.

Access to Mass Storage Files

The third advantage of using I/O path names is that device selectors cannot be used to direct
data to or from mass storage files. Therefore, I/O path names are the only access to files. If
the data is ever to be directed to a file, you must use I/O path names.

Attribute Control

I/O paths have certain “attributes” which control how the system handles data sent through
the I/O path. For example, the FORMAT attribute possessed by an I/O path determines
which data representation will be used by the path during communications. If the path
possesses the attribute of FORMAT ON, the ASCII data representation will be used. This

is the default attribute automatically assigned by the computer when I/O path names are
assigned to device selectors. If the I/O path possesses the attribute of FORMAT OFF, the
internal data representation is used; this is the default format for BDAT files. Further details
of these and additional attributes are discussed in the “I/O Path Attributes” chapter.

The final factor that favors using I/O path names is that you can control which attribute(s)
are to be assigned to the I/O path. Attributes can be attached to an I/O path name when

Directing Data Flow 3-7

it is assigned to a device (via the ASSIGN statement) and can specify data representation
(ASCII or internal) as well as the end-of-line sequence for all data using the path. Details of ()
these attributes are discussed in the “I/O Path Attributes” chapter. ~—

3-8 Directing Data Flow

Outputting Data

Introduction

This chapter describes the topic of outputting data to devices; outputting data to string
variables, and mass storage files is described in the “I/O Path Attributes” chapter of this
manual, in the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming
Techniques.

There are two general types of output operations. The first type, known as “free-field
outputs”, use the HP Instrument BASIC’s default data representations. The second type
provides precise control over each character sent to a device by allowing you to specify the
exact “image” of the ASCII data to be output.

Free-Field Outputs
Free-field outputs are invoked when the following types of OUTPUT statements are executed.

Examples
OUTPUT @Device;3.14*Radius~2

OUTPUT Printer;"String data";Num_1
OUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$;CHR$(27)&"&A1S";

The Free-Field Convention

The term “free-field” refers to the number of characters used to represent a data item.

During free-field outputs, HP Instrument BASIC does not send a constant number of ASCII
characters for each type of data item, as is done during “fixed-field outputs” which use images
(described later). Instead, a special set of rules is used that govern the number and type of
characters sent for each source item. The rules used for determining the characters output for
numeric and string data are described in the following paragraphs.

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 15 (and INTEGERs can have up
to 5) significant decimal digits of accuracy, not all of these digits are output with free-field
OUTPUT statements. Instead, the following rules of the free-field convention are used when
generating a number’s ASCII representation.

Outputting Data 4-1

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive, a leading space is
output for the sign; if negative, a leading “-” is output.

For example:

32767
-32768
123456.789012
-.000123456789012

If the number is less than 1E—5 or greater than 1E+46, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is a
space for positive and “-” for negative numbers.

For example:

-1.23456789012E+6
1.23456789012E-5

Standard String Format

No leading or trailing spaces are output with the string’s characters.

String characters.
No leading or trailing spaces.

Item Separators and Terminators

Data items are output one byte at a time, beginning with the left-most item in the source
list and continuing until all of the source items have been output. Items in the list must be
separated by either a comma or a semicolon. However, items in the data output may or may
not be separated by item terminators, depending on the use of item separators in the source
lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

1st item 2nd item . last EOL
item | terminator | item | terminator item sequence

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

OUTPUT Device;"Item",-1234

1leleflm|cr|LF]-|1]2]3]4 EOL The default EOL sequence is a CR/LF
sequence

4-2 Outputting Data

A comma separator specifies that a comma, CHR$(44), terminates numeric items.

OUTPUT Device;-1234,"Item"

- EOL
112)13]14] . ltemsequence

If a separator follows the last item in the list, the proper item terminator will be output
instead of the EOL sequence.

OUTPUT Device;"Item", OUTPUT Device;-1234,

Using a semicolon separator suppresses output of the (otherwise automatic) item’s terminator.

OUTPUT 1;"Itemi";"Item2" OUTPUT 1;-12;-34

1fe]lefm|1]1]t]elm]|2 EOL -{1{2]-|3]|+ EOL
sequence sequence

If a semicolon separator follows the last item in the list, the EOL sequence and item
terminators are suppressed.

OUTPUT 1;"Item1";"Item2";

| Neither of the item teminators nor
the EOL sequence are output.

Outputting Data 4-3

If the item is an array, the separator following the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

110 DIM Array(1:2,1:3)
120 FOR Row=1 TO 2

130 FOR Column=1 TO 3

140 Array (Row, Column)=Row#10+Column

150 NEXT Column

160 NEXT Row

170 !

180 OUTPUT CRT;Array(») ! No trailing separator.
190 '

200 - OUTPUT CRT;Array(*), ! Trailing comma.

210 !

220 OUTPUT CRT;Array(*); ! Trailing semi-colon.
230 !

240 OUTPUT CRT;"Done"

250 END

Resultant Output

1], 1]2], vl 2. 2)2).] |2]3 EOL
sequence
1], 1121, sl 20,1 1212]. 2|3,
11 1]2 1|3 211 2|2 213
D{o]|N]E EOL
sequence

Item separators cause similar action for string arrays.

110 DIM Array$(1:2,1:3)[2]
120 FOR Row=1 TO 2

130 FOR Column=1 TO 3

140 Array$(Row,Column)=VAL$ (Row#10+Column)
150 NEXT Column

160 NEXT Row

170 !

180 OUTPUT CRT;Array$(*) ! No trailing separator.
190 !

200 OUTPUT CRT;Array$(+*), ! Trailing comma.

210 !

220 OUTPUT CRT;Array$(*); ! Trailing semi-colon.
230 !

240 OUTPUT CRT;"Done"

250 END

4-4 Outputting Data

Y

Resultant Output

EOL
1] |er[er] 1 |2 |er[ir| 1 | 3]er|rl 2|1 |eR|WF| 2 [2 [cR|WF| 2| 3| S,

EOL
t]1]ler|Frl v V2 |crILF] 1 | 3|cR|LF] 2] 1 {CRjLF| 2| 2 |[CRILF| 2] 3 sequence

v 211]3]2]11]12]121213

EOL
DfofN[E sequence

Changing the EOL Sequence

An end-of-line (EOL) sequence is normally sent following the last item sent with OUTPUT.
The default EOL sequence consists of a carriage-return and line-feed (CR/LF), sent with
no device-dependent END indication. It is also possible to define your own special EOL
sequences that include sending special characters, and sending an END indication.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an I/O
path must be used. The EOL sequence is specified in one of the ASSIGN statements which
describe the I/O path. An example is as follows.

ASSIGN QDevice TO 7;EOL CHR$(10)&CHR$ (10)&CHR$(13)

The characters following EOL are the new EQL-sequence characters. Any character in the
range CHR$(0) through CHR$(255) may be included in the string expression that defines the
EOL characters; however, the length of the sequence is limited to eight characters or less.

If END is included in the EQL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EOL sequence to include an END indication.

ASSIGN Q@Device TO 7;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no END indication; this default can be
restored by assigning EOL OFF to the I/O path.

EOL sequences can also be sent by using the “L” image specifier. See “Outputs that Use
Images” for further details.

Outputting Data 4-5

Using END in Freefield OUTPUT

The secondary keyword END may be optionally specified following the last source-item
expression in a freefield OUTPUT statement. The result is to suppress the End-of-Line
(EOL) sequence that would otherwise be output after the last byte of the last source item. If
a comma is used to separate the last item from the END keyword, the corresponding item
terminator will be output as before (carriage-return and line-feed for string items and comma
for numeric items).

The END keyword has additional significance when the destination is a mass storage file. See
the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming Techniques
for further details.

Additional Definition

HP Instrument BASIC defines additional action when END is specified in a freefield
OUTPUT statement directed to the HP-IB interface.

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify signal

(EOI) with the last data byte of the last source item; however, if no data are sent from the last
source item, EQI is not sent.

Examples

ASSIGN @Device TO 701

OUTPUT @Device;~10,END

-f1]o].
-’

EOl sent with the last character
(numeric item terminator).

OUTPUT @Device;"AB" ;END

AlB
—~

EOl sent with the last character of the item.

OUTPUT QDevice ;END
QUTPUT @Device;""END

Neither EOL sequence nor EQI is sent, since no data is sent.

4-6 Outputting Data

0

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or
the exponent of a number must have only one digit. This section shows you how to use image
specifiers to create your own, unique data representations for output operations.

The OUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the “USING” secondary keyword. This image consists of one or
more individual image specifiers which describe the type and number of data bytes (or words)
to be output. The image can be either a string literal, a string variable, or the line label or
number of an IMAGE statement. Examples of these four possibilities are listed below.

100 OUTPUT 1 USING "6A,SDDD.DDD,3X";" K= ",123.45

100 Image_str$="6A,SDDD.DDD,3X"
110 OUTPUT CRT USING Image_str$;" K= ";123.45

100 OUTPUT CRT USING Image_stmt;" K= ";123.45
110 Image_stmt: IMAGE 6A,SDDD.DDD,3X

100 OQUTPUT 1 USING 110;" K= ";123.45
110 IMAGE 6A,SDDD.DDD,3X

Images

Images are used to specify the format of data during I/O operations. Each image consists
of groups of individual image (or “field”) specifiers, such as 6A, SDDD.DDD, and 3X in the
preceding examples. Each of these field specifiers describe one of the following things:

m It describes the desired format of one item in the source list. (For instance, 6A specifies
that a string item is to be output in a “6-character Alpha” field. SDDD.DDD specifies that
a numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point,
followed by 3 Decimal digits following the decimal point.)

s It specifies that special character(s) are to be output. (For instance, 3X specifies that 3
spaces are to be output.) There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure.
It is convenient to talk about the image list as a procedure for the purpose of explaining how
this type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to be
output. The order of images in the list corresponds to the order of data items in the source
list. In addition, image specifiers can be added to output (or to suppress the output of)
certain characters.

Outputting Data 4-7

Example of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; each will be fully
described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

OUTPUT CRT USING "6A,SDDD.DDD,3X";" K= ",123.45

The data stream output by the computer is as follows.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

K|= +11]1213] .14]|5]¢0 CR|LF

\ N\ A Lv
6A s D DD . D DD 3X default EOL
sequence

The computer evaluates the first image in the list. Generally, each group of
specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general, each
group of specifiers is processed before going on to the next group. In this case,
6 alphanumeric characters taken from the first item in the source list are to be
output.

The computer then evaluates the first item in the source list and begins outputting
it, one byte (or word) at a time. After the 4th character, the first expression has
been “exhausted”. In order to satisfy the corresponding specifier, two spaces
(alphanumeric “fill” characters) are output.

The computer evaluates the next image (note that this image consists of several
different image specifiers). The “S” specifier requires that a sign character be
output for the number, the “D” specifiers require digits of a number, and the

“." specifies where the decimal point will be placed. Thus, the number of digits
following the decimal point have been specified. All of these specifiers describe the
format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is output
one digit at a time, according to its image specifiers. A trailing zero has been
added to the number to satisfy the “DDD?” specifiers following the decimal point.

The next image in the list (“3X”)is evaluated. This specifier does not “require”
data, so the source list needs no corresponding expression. Three spaces are output
by this image.

Since the entire image list and source list have been “exhausted”, the computer
then outputs the current (or default, if none has been specified) “end-of-line”
sequence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in type and in number of items.

4-8 Outputting Data

~

Image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested that
you scan through the description of each specifier and then look over the examples. You are
also highly encouraged to experiment with the use of these concepts.

Numeric Images

These image specifiers are used to describe the format of numbers.

Sign, Digit, Radix and Exponent Specifiers

Image Specifier

Meaning

S
M

Specifies a “+” for positive and a “—” for negative numbers is to be output.

Specifies a leading space for positive and a “—” for negative numbers is to be
output.

Specifies one ASCII digit (“0” through “9”) is to to be output. Leading spaces
and trailing zeros are used as fill characters. The sign character, if any, “floats”
to the immediate left of the most-significant digit. If the number is negative and
no S or M is used, one digit specifier will be used for the sign.

Same as “D” except that leading zeros are output. This specifier cannot appear
to the right of a radix specifier (decimal point or R).

Like D, except that asterisks are output as leading fill characters (instead of
spaces). This specifier cannot appear to the right of a radix specifier (decimal

point or R).

Specifies the position of a decimal point radix-indicator (American radix) within
a number. There can be only one radix indicator per numeric image item.

ESZ
ESZ7ZZ

Specifies the position of a comma radix indicator (European radix) within a
number. There can be only one radix indicator per numeric image item.

Specifies that the number is to be output using scientific notation. The “E”
must be preceded by at least one digit specifier (D, Z, or *). The default
exponent is a four-character sequence consisting of an “E”, the exponent sign,
and two exponent digits, equivalent to an “ESZZ” image. Since the number is
left-justified in the specified digit field, the image for a negative number must
contain a sign specifier (see the next section).

Same as “E” but only 1 exponent digit is output.

Same as “E” but three exponent digits are output.

K, -K

Specifies that the number is to be output in a “compact” format, similar to the
standard numeric format; however, neither leading spaces (that would otherwise
replace a “+” sign) nor item terminators (commas) are output, as would be with
the standard numeric format.

Like K, except that the number is to be output using a comma radix (European
radix).

Outputting Data 4-9

Numeric Examples
OUTPUT @Device USING "DDDD";-123.769

4| EOL
sequence

OUTPUT @Device USING "4D";~-1.2

EOL
sequence

OUTPUT @Device USING "“2Z.DD";1.675

g| EoL
sequence

OUTPUT @Device USING "Z.D";.35

EOL

sequence

OUTPUT @Device USING "DD.E";12345

EOL
sequence

OUTPUT Q@Device USING "2D.DDE" ;2E-4

5 EOL
sequence

OUTPUT @Device USING "K";12.400

4| €EoL
sequence

4-10 Outputting Data

OUTPUT CRT USING "MDD.2D";-12.449

- EOL
1]2 S5 sequence
OQUTPUT CRT USING "MDD.DD";2.09
EOL
2 o sequence
OUTPUT 1 USING "SD.D";2.449
+ 12 EOL
sequence
OUTPUT 1 USING "SZ.DD"; .49
+ 0 EOL
sequence
OUTPUT CRT USING "SDD.DDE";-2.35
-]2]3 5 -lo]|1 EOL
sequence
OUTPUT @Device USING "#**.D";2.6
«| 2 EOL
sequence
OUTPUT @Device USING "DRDD";3.1416
3 EOL
sequence

Outputting Data 4-11

OUTPUT @Device USING "H";3.1416

31 .{1]4]1]86 EOL
sequence

String Images

These types of image specifiers are used to specify the format of string data items.

Character Specifiers

Image Specifier Meaning

A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

“literal” All characters placed in quotes form a string literal, which is output exactly
as is. Literals can be placed in output images which are part of OUTPUT
statements by enclosing them in double quotes.

K, -K, H, —H Specifies that the string is to be output in “compact” format, similar to the
standard string format; however, no item terminators are output as with the
standard string format.

String Examples
0UTPUT QDevice USING "8A";"Characters"

EOL
CharOCtesequence

; EOL
ABL'ter°|sequence

OUTPUT QDevice USING "K";" Hello "

EOoL
Hiej] lfo sequence

4-12 Outputting Data

»

OUTPUT @Device USING "5A";" Hello "

Binary Images

EOL
Hie sequence

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCII characters or integers in their internal

representation.

Binary Specifiers

Image Specifier

Meaning

B

Specifies that one byte (8 bits) of data is to be output. The source expression
is evaluated, rounded to an integer, and interpreted MOD 256. If it is less than
—32 768, CHR$(0) is output. If is greater than 32 767, CHR$(255) is output.

Specifies that one word of data (16 bits) are to be sent as a 16-bit,
two’s-complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than —32 768, then —32 768 is sent; if it is
greater than 32 767, then 32 767 is sent.

If the destination is a BDAT or HPUX file, or string variable, the WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s),
CHR$(0), will also be output whenever necessary to achieve alignment on a word
boundary.

Since HP Instrument BASIC only supports 8-bit interfaces, two bytes are always
output, with the most significant byte first. This image specifier has been
included primarily to maintain compatibility with HP Series 200/300 BASIC

programs that include this specifier.

Like W, except that no pad bytes are output to achieve alignment on a word
boundary.

Binary Examples

OUTPUT @Device USING "B,B,B";65,66,67

AlBslc EOL
sequence

OUTPUT QDevice USING "B";13

Outputting Data 4-13

OUTPUT @Device USING "W";256%65+66

AlB EOL
sequence

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to output
spaces, end-of-line sequences, and form-feed characters.

Special-Character Specifiers

Image Specifier Meaning
X Specifies that a space character, CHR$(32), is to be output.
/ Specifies that a carriage-return character, CHR$(13), and a line-feed character,
CHR$(10), are to be output.
@ Specifies that a form-feed character, CHR$(12), is to be output.

Special-Character Examples
OUTPUT Q@Device USING "A,4X,A";"M","A"

M A EOL
sequence

OUTPUT @Device USING "50X"

EOL
<= (50 spaces) = | EOL

OUTPUT @Device USING "@,/"

FFicrR|LF|_ EOL
sequence

OUTPUT @Device USING "/"

CR|LF|__EOL
sequence

4-14 Outputting Data

Termination Images

These specifiers are used to output or suppress the end-of-line sequence output after the last

data item.
Termination Specifiers
Image Specifier Meaning

L Specifies that the current end-of-line sequence is to be output. The default EOL
characters are CR and LF; see “Changing the EOL Sequence” for details on how
to re-define these characters.

Specifies that the EOL sequence that normally follows the last item is to be
suppressed.

% Is ignored in output images but is allowed to be compatible with ENTER
images.

+ Specifies that the EOL sequence that normally follows the last item is to be
replaced by a single carriage-return character (CR).

- Specifies that the EOL sequence that normally follows the last item is to be
replaced by a single line-feed character (LF).

Termination Examples
OUTPUT @Device USING "4A,L";"Data"

Dlalt]a EOL EOL
sequence | sequence

OUTPUT @Device USING "#,K";"Data"

OUTPUT Q@Device USING "#,B";12

OUTPUT @Device USING "+,K";"Data"

Outputting Data 4-15

OUTPUT @Device USING "-,L,K";"Data"

EOL D]ja]t]al]lLF
sequence

Additional Image Features

Several additional features of outputs which use images are available with the computer.
Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. For instance, to a character field of 15 characters, you do not
need to use “AAAAAAAAAAAAAAA”; instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (“15A”). The following specifiers can be
repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers Non-Repeatable Specifiers

Z,D,AX,/,@,L S,M, ,R,E,K,H,B,W,Y,#,%, +, -

Examples
OUTPUT @Device USING "4Z.3D";328.03

EOL
oj3)12|8}.}160 Sosequence

Dlalt]a b | EOL
sequence

OUTPUT @Device USING "56X,2A";"Data"

Dla EOL
sequence

4-16 Outputting Data

»

OUTPUT @Device USING "2L,4A";"Data"

EOL oL |plalt]la] EOL
sequence | sequence sequence

OUTPUT @Device USING "84,2Q";"The End"

EOL
Tlhle Efnjd FF]FF sequence

OUTPUT @Device USING "2/"

CcR|LF|crR|LF| EOL
sequence

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to re-use the image(s) beginning with the first image.

110
120
130
140
150
160
170

ASSIGN @Device TO CRT

Num_1i=1

Num_2=2

[]

OUTPUT €Device USING "K'";Num_1,"Data_1",Num_2,"Data_2"
OUTPUT €@Device USING "K,/";Num_1,"Data_1",Num_2,"Data_2"
END

Resultant Display
iData_12Data_2

1

Data_1

2

Data_2

Since the “K” specifier can be used with both numeric and string data, the above OUTPUT
statements can re-use the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, “Error
100 in 150” occurs due to data mismatch.

110
120
130
140
150
160

ASSIGN €Device TO CRT

Num_1=1

Num_2=2

{

OQUTPUT €Device USING "DD.DD";Num_1,Num_2,"Data_1"
END

Outputting Data 4-17

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this
feature.

100 ASSIGN @Device TD 701

110 !
120 OUTPUT @Device USING "3(B),X,DD,X,DD";65,66,67,68,69
130 END

Resultant Output

alBlc 6|8 6|9 EOL
sequence

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Only eight levels of nesting are allowed.

END with OUTPUTSs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results which differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no data are output from the last source-list expression. Thus, the “#” image
specifier generally controls the suppression of the otherwise automatic EOL sequence, while
the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K";"ABC",END
OUTPUT Device USING "K";"ABC";END
OUTPUT Device USING "K";"ABC" END

EOL :
AlBJC sequence The EOL sequence is not suppressed.

OUTPUT Device USING "L,/,""Literal"",X,Q"

EOL i EOL
sequence CRILFIYT it eLr)ey! FF sequence

4-18 Outputting Data

~

Y

In this case, specifiers that require no source-item expressions are used to generate characters
for the output; there are no source expressions. The EOL sequence is output after all
specifiers have been used to output their respective characters. Compare this action to that

shown in the next example.

OUTPUT Device USING "L,/,""Literal"",X,@" ;END

EOL
sequence

CRILF| LY}

FF

The EOL sequence is suppressed because no source items were included in the statement; all
characters output were the result of specifiers which require no corresponding expression in

the source list.

Additional END Definition

The END secondary keyword has been defined to produce additional action when included in
an OUTPUT statement directed to HP-IB interfaces.

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify signal
(EOI) with the last character of either the last source item or the EOL sequence (if sent). As
with freefield OUTPUT, no EOQI is sent if no data is sent from the last source item and the

EOL sequence is suppressed.

Examples.
ASSIGN @Device TO 701

OUTPUT @Device USING "K";"Data",END
OUTPUT @Device USING "K";"Data","",END

sequence

EOL

EQl sent with last character
of the EOL sequence.

OUTPUT @Device USING "#,K";"Data" END

—~—

D|laoa|t]a

—

EOl sent with this character.

EOI is sent with the last character of the last source item when the EOL sequence is
suppressed, because the last source item contained data which was used in the output.

Outputting Data 4-19

OUTPUT €@Device USING "#,K";"Data","",END
OUTPUT @Device USING """Data""";END

The EOI was not sent in either case, since no data were sent from the last source item and the
EOL sequence was suppressed.

4-20 Outputting Data

®)

5

Entering Data

This chapter discusses the topic of entering data from devices. You may already be familiar
with the QUTPUT statement described in the previous chapter; many of those concepts are
applicable to the process of entering data. Earlier in this manual, you were told that the

data output from the sender had to match that ezpected by the receiver. Because of the many
ways that data is represented in external devices, entering data can sometimes require more
programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that use images are described, and
several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions which are the “converse” of
those used with the free-field OUTPUT statement. In other words, data output using the
free-field form of the QUTPUT statement can be readily entered using the free-field ENTER
statement; no explicit image specifiers are required. The following statements exemplify this
form of the ENTER statement.

For example:

ENTER @Voltmeter;Reading

ENTER 724;Readings(*)

ENTER From_string$;Average,Student_name$
ENTER OFrom_file;Data_code,Str_element$(X,Y)

Item Separators

Destination items in ENTER statements can be separated by either a comma or a semicolon.
Unlike the OUTPUT statement, it makes no difference which is used; data will be entered
into each destination item in a manner independent of the punctuation separating the
variables in the list. However, no trailing punctuation is allowed. The first two of the following
statements are equivalent, but an error is reported when the third statement is executed.

For example:

ENTER CFrom_a_device;N1,N2,N3
ENTER OFrom_a_device;N1i;N2;N3

Entering Data 5-1

Item Terminators

Unless the receiver knows exactly how many characters are to be sent, each data item output
by the sender must be terminated by special character(s). When entering ASCII data

with the free-field form of the ENTER statement, the computer does not know how many
characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the
proper destination variable. The terminator of the last item may also terminate the ENTER
statement (in some cases). The actual character(s) that terminate entry into each type of
variable are described in the next sections.

In addition to the termination characters, each item can be terminated (only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a signal
known as EQOI (End-or-Identify). The EOI signal is only available with the HP-IB, and
keyboard interfaces. EOI termination is further described in the next sections.

Entering Numeric Data with the Number Builder

When the free-field form of the ENTER statement is used, numbers are entered by a routine
known as the “number builder”. This firmware routine evaluates the incoming ASCII numeric
characters and then “builds” the appropriate internal-representation number. This number
builder routine recognizes whether data being entered is to be placed into an INTEGER or
REAL variable and then generates the appropriate internal representation.

The number builder is designed to be able to enter several formats of numeric data. However,
the general format of numeric data must be as follows to be interpreted properly by HP
Instrument BASIC.

Mantissa | Mantissa | E | Exponent | Exponent Terminator
sign digit(s) sign digit(s) (character or
END indication)
. v A v A v A ~
Optional At least Optional Required
one digit
is required

Numeric characters include decimal digits “0” through “9” and the characters “.”, “4”,
“-» “E”, and “e”. These last five characters must occur in meaningful positions in the data
stream to be considered numeric characters; if any of them occurs in a position in which it
cannot be considered part of the number, it will be treated as a non-numeric character.

5-2 Entering Data

(M)

N

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and embedded spaces are ignored.

100 ASSIGN ODevice TO Device_selector
110 ENTER CDevice;Number ! Default is data type REAL.

120 END
Consumed
=
NJulmlble]r|= 112 3 |LF
\ " A _d)
Ignored Number Terminator

{for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that Number
receives a value of 123. The line-feed (statement terminator) is required since Number is
the last item in the destination list.

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters (of both string and numeric items) are “consumed”. In this manual, “consumed”
characters refers to characters used to terminate an item but not entered into the variable;
“ignored” characters are entered but are not used.

ENTER @Device;Real_number,String$

Consumed Consumed
A —_
N[um]ole]r[=] [1]2]3].]4[a]8[c]oftror crir)
\ A } Ay J
v Y \ M M
Ignored Real_number Numeric String$ Terminator
item {for both item
terminator and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters “BCD”. The “A”
was lost when it terminated the numeric item; the string-item terminator(s) are also lost.
The string-item terminator(s) also terminate the ENTER statement, since String$ is the
last item in the destination list.

3. If more than 16 digits are received, only the first 16 are used as significant digits. However,
all additional digits are treated as trailing zeros so that the exponent is built correctly.

Entering Data 5-3

ENTER QDevice;Real_number_i

Consumed
-
1[2]3]4]5]s 7{8]ofo]1|2]3]4]5]s LF |
| " Jv
Real_number_1 Terminator

(for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real _number_1 receives the value 1.234567890123456 E+15.

ENTER @Device;Real_number_2

Used only
to build
the exponent. Consumed

11213]4)|5|6|7|8}9|0|1|2|3)4]|5]|86]|]7]|8]|LF
Aay’

h 4
Real_number_2 Terminator
(for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_2 receives the value 1.234567890123456 E+17.

4. Any exponent sent by the source must be preceded by at least one mantissa digit and an
E(or e) character. If no exponent digits follow the E (or e), no exponent is recognized, but
the number is built accordingly.

ENTER @Device;Real_number

Consumed
~=
lel sl . ls]s] [e]-]1]2[c]o]u]i]rr
S v A o, e, o/
Ignored Real_number Nq{neric Ignored Terminator
ter:’n?r?gtor

The result of entering the preceding data with the given ENTER statement is that
Real_number receives a value of 8.85 E—12. The character “C” terminates entry into
Real_number, and the characters “oul” are entered (but ignored) in search of the required
line-feed statement terminator. If the character “C” is to be entered but not ignored, you
must use an image. Using images with the ENTER statement is described later in this
chapter.

5-4 Entering Data

Y

5. If a number evaluates to a value outside the range corresponding to the type of the numeric
variable, an error is reported. If no type has been declared explicitly for the numeric
variable, it is assumed to be REAL.

ENTER @Device;Real_number

Consumed
-
112131 .14lE|+]|3}0]7]|LF| Evaluates to 1.234E+309.
- v L ;
The resultant value Terminator
cannot be stored (for both items
in Real_number. and statement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former
value.

6. If the item is the last one in the list, both the item and the statement need to be properly
terminated. If the numeric item is terminated by a non-numeric character, the statement
will not be terminated until it either receives a line-feed character or an END indication
(such as EOI signal with a character). The topic of terminating free-field ENTER
statements is described later.

Entering String Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers, almost any
character can appear in any position within a string; there is not really any defined structure
of string data. The routine used to enter string data is therefore much simpler than the
number builder. It only needs to keep track of the dimensioned length of the string variable
and look for string-item terminators (such as CR/LF, LF, or EOI sent with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed by
a line-feed (CR/LF). As with numeric-item terminators characters, these characters are not
entered into the string variable (during free-field enters); they are “lost” when they terminate
the entry. The EOI signal also terminates entry into a string variable, but the variable must
be the last item in the destination list (during free-field enters).

All characters received from the source are entered directly iemph appropriate string variable
until any of the following conditions occurs:

m an item terminator character is received.
m the number of characters entered equals the dimensioned length of the string variable.
m the EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the
next section describes termination by EOI. Assume that the string variables Five_char$ and
Ten_char$ are dimensioned to lengths of 5 and 10 characters, respectively.

Entering Data 5-5

ENTER @Device;Five_char$

Consumed

A|lB|CIDJE]JF|G]|H]|CR|LF

— N\ Ve Av
Five_char$ Ignored Terminator

(for both item
and statement)

The variable Five_char$ only receives the characters “ABCDE”, but the characters “FGH” are
entered (and ignored) in search of the terminating carriage-return/line-feed (or line-feed).

ENTER Q@Device;Ten_char$

Consumed Consumed
,-I\ P‘
Alslc|olelr]e|[r] or IABCDEFIGCRLF
| v 4 ; | . v Aw
Ten_char$ Terminator Ten_chard Terminator

(for both item (for both item

and statement) and statement)

The result of entering the preceding data with the given ENTER statement is that Ten_char$
receives the characters “ABCDEFG” and the terminating LF (or CR/LF) is lost.

5-6 Entering Data

Terminating Free-Field ENTER Statements
Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOI, the
entire statement is properly terminated.

2. If an END indication is received while entering data into the last item, the statement is
properly terminated. Examples of END indications are encountering the last character of a
string variable while entering data from the variable, and receiving EQI with a character.

3. If one of the preceding statement-termination conditions has not occurred but entry into
the last item has been terminated,up to 256 additional characters are entered in search of a
termination condition. If one is not found, an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned length
string has been reached before a terminator is received, additional characters are entered (but
ignored) until the terminator is found. The reason for this action is that the next characters
received are still part of this data item, as far as the data sender is concerned. These
characters are accepted from the sender so that the next enter operation will not receive these
“leftover” characters.

Another case involving numeric data can also occur (see the example given with “rule 4”
describing the number builder). If a trailing non-numeric character terminates the last item
(which is a numeric variable), additional characters will be entered in search of either a
line-feed or a character accompanied by EOI. Unless this terminating condition is found before
256 characters have been entered, an error is reported.

"EOI Termination

A termination condition for the HP-IB Interface is the EQI (End-or-Identify) signal. When
this message is sent, it immediately terminates the entire ENTER statement, regardless

of whether or not all variables have been satisfied. However, if all variable items in the
destination list have not been satisfied, an error is reported.

For example:

ENTER @Device;String$

tals]|c|oe[Florfa]B]c|[of[e]r]|rlor{ala|c]|o]E]F[cr[Lr]

-’ - -/
Sent with Sent with Sent with
EOI EO EQI

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF”. The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement. If the
character accompanied by EOI is a string character (not a terminator), it is entered into the
variable as usual.

Entering Data 5-7

For example:
ENTER @Device;Number

Used to
build Number Consumed Consumed

= =
112134)5|or|1]213]4|5|A]or]1|2]|314]5ILF
\ — ‘] | - v v] | v 4)

Number Sent with Number Sent with Number Sent with
Xa]| EO! EOI

The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345. If the EOI signal accompanies a numeric character, it is
entered and used to build the number; if the EOI is received with a numeric terminator, the
terminator is lost as usual.

ENTER @Device;Number,String$

An error is reported
1 | 2 I S|4 5I (Error 153 Insufficient data for ENTER).
\ Vi

" Ay’
Number Sent with
EQI

The result of entering the preceding data with the given statement is that an error is reported
when the character “5” accompanied by EOI is received. However, Number receives the value
12345, but String$ retains its previous value. An error is reported because all variables in

the destination list have not been satisfied when the EOI is received. Thus, the EOI signal is
an immediate statement terminator during free-field enters. The EOI signal has a different
definjtion during enters that use images, as described later in this chapter.

Enters that Use Images

The free-field form of the ENTER statement is very convenient to use; the computer
automatically takes care of placing each character into the proper destination item. However,
there are times when you need to design your own images that match the format of the

data output by sources. Several instances for which you may need to use this type of enter
operations are: the incoming data does not contain any terminators; the data stream is not
followed by an end-of-line sequence; or two consecutive bytes of data are to be entered and
interpreted as a two’s-complement integer.

5-8 Entering Data

The ENTER USING Statement

The means by which you can specify how the computer will interpret the incoming data is to
reference an image in the ENTER statement. The four general ways to reference the image in
ENTER statements are as follows.

100 ENTER @Device_x USING "6A,DDD.DD";String_var$,Num_var

100 Image_str$="6A,DDD.DD"
110 ENTER @Device_x USING Image_str$;String_var$,Num_var

100 ENTER €Device USING Image_stmt;String_var$,Num_var
110 Image_stmt: IMAGE 6A,DDD.DD

100 ENTER €Device USING 110;String_var$,Num_var
110 IMAGE 6A,DDD.DD

Images

Images are used to specify how data entered from the source is to be interpreted and placed
into variables; each image consists of one or more groups of individual image specifiers that
determine how the computer will interpret the incoming data bytes (or words). Thus, image
lists can be thought of as a description of either:

u the format of the expected data, or

m the procedure that the ENTER statement will use to enter and interpret the incoming data
bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However,
most of the specifiers have a slightly different meaning for each operation. If you plan to use
the same image for output and enter, you must fully understand how both statements will use
the image.

Example of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter incoming
data into variables. Look through the example to get a general feel for how these enter
operations work. Afterwards, you should read the descriptions of the pertinent specifier(s).

Assume that the following stream of data bytes are to be entered into the computer.

AN J

[lefmlel . T=T T [+Iela] [5] [Flafnfrfefn]n]e]i]¢]
\ v Jv‘ Y

-
Ignored Degrees Units$ Ignored |

Assume EOI is
sent with
this character

Entering Data 5-9

Given the preceding conditions, let’s look at how the computer executes the following ENTER
statement that uses the specified IMAGE statement.

300 ENTER @Device USING Image_1;Degrees,Units$
310 Image_1: IMAGE 8X,SDDD.D,A

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The computer evaluates the first image of the IMAGE statement. It is a special
image in that it does not correspond to a variable in the destination list. It
specifies that eight characters of the incoming data stream are to be ignored. Eight
characters, “Temp.= ”, are entered and are ignored (i.e., are not entered into any
variable).

The computer evaluates the next image. It specifies that the next six characters
are to be used to build a number. Even though the order of the sign, digit, and
radix are explicitly stated in the image, the actual order of these characters in
the incoming data stream does not have to match this specifier exactly. Only the
number of numeric specifiers in the image, here six, is all that is used to specify
the data format. When all six characters have been entered, the number builder
attempts to form a number.

After the number is built, it is placed into the variable “Degrees”; the
representation of the resultant number depends on the numeric variable’s type
(INTEGER, or REAL).

The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable “Units$”. One byte is
then entered into Units$.

All images have been satisfied; however, the computer has not yet detected a
statement-terminating condition. A line-feed or a character accompanied by EOI
must be received to terminate the ENTER statement. Characters are then entered,
but ignored, in search of one of these conditions. The statement is terminated
when the EOI is sent with the “t”. For further explanation, see “Terminating
Enters that Use Images”.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to create
your desired images.

Image Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

5-10 Entering Data

~

~—

Y,

Numeric Images

Sign, digit, radix, and exponent specifiers are all used identically in ENTER images. The
number builder can also be used to enter numeric data.

Numeric Specifiers

Image Specifier

Meaning

D

Z,*

S, M

Specifies that one byte is to be entered and interpreted as a numeric character.
If the characters is non-numeric (including leading spaces and item terminators),
it will still “consume” one digit of the image item.

Same action as D. Keep in mind that A and * can only appear to the left of the
radix indicator (decimal point or R) in a numeric image item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must follow either of these specifiers in an
image item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must accompany this specifier in an image
item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character; however, when R is used in a numeric image, it directs the number
builder to use the comma as a radix indicator and the period as a terminator to
the numeric item. At least one digit specifier must accompany this specifier in
the image item.

Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in the
image item.

The following specifiers must also be preceded by at least one digit specifier.

ESZ
ESZZ
ESZZZ

Equivalent to 3D.
Equivalent to 4D.
Equivalent to 5D.

K, -K

H, -H

Specifies that a variable number of characters are to be entered and interpreted
according to the rules of the number builder (same rules as used in “free-field”
ENTER operations).

Like K, except that a comma is used as the radix indicator, and a period is used
as the terminator for the numeric item.

Examples of Numeric Images

These 5 are equivalent:

ENTER @Device USING *"SDD.D";Number
ENTER €@Device USING "3D.D";Number
ENTER @Device USING "5D";Number

ENTER @Device USING "DESZZ";Number
ENTER @Device USING "#»# . DD";Number

Use the rules of the number builder:

Entering Data 5-11

ENTER Device USING "K";Number

Enter five characters, using comma as radix:

ENTER @Device USING "DDRDD";Number

Use the rules of the number builder, but use the comma as radix:

ENTER @Device USING "H";Number

String Images

The following specifiers are used to determine the number of and the interpretation of data
bytes entered into string variables.

String Specifiers

Image Specifier

Meaning

A

K,H

Specifies that one byte is to be entered and interpreted as a string character.
Any terminators are entered into the string when this specifier is used.

Specifies that “free-field” ENTER conventions are to be used to enter data
into a string variable; characters are entered directly into the variable until a
terminating condition is sensed (such as CR/LF, LF, or an END indication).

-K, -H

L@

Like K, except that line-feeds (LF’s) do not terminate entry into the string;
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance, receiving
EOI with a character on an HP-IB interface, encountering an end-of-data, or
reaching the variable’s dimensioned length).

These specifiers are ignored for ENTER operations; however, they are allowed for
compatibility with OUTPUT statements (that is, so that one image may be used
for both ENTER and OUTPUT statements). Note that it may be necessary to
skip characters (with specifiers such as X or /) when ENTERing data which has
been sent by including these specifiers in an OUTPUT statement.

Examples of String Images

Enter 10 characters:

ENTER @Device USIKG "10A";Ten_chars$

Enter using the free-field rules:

ENTER @Device USING "K";Any_string$

Enter two strings:

ENTER @Device USING "5A,K";String$,Number$

Enter a string and a number:

ENTER @Device USING "G5A,K";String$,Number

Enter characters until string is full or END is received:

ENTER ¢Device USING "-K";All_chars$

5-12 Entering Data

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e., entered but not
placed into a string variable).

Specifiers Used to Ignore Characters

Image Specifier Meaning
X Specifies that a character is to be entered but ignored (not placed into a
variable).
“literal” Specifies that the number of characters in the literal are to be entered but

ignored (not placed into a variable).

/ Specifies that all characters are to be entered but ignored (not placed into a
variable) until a line-feed is received. EOI is also ignored until the line-feed is
received.

Examples of Ignoring Characters

Ignore first five and use second five characters:

ENTER @Device USING "5X,5A";Five_chars$

Ignore 6th through 9th characters:
ENTER @Device USING "5A,4X,10A";S_1$,5_2%

Ignore 1st item of unknown length:
ENTER @Device USING "/,K";String2$

Ignore two characters:

ENTER @Device USING """zz"",AA";S_2%

Binary Images

These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Binary Specifiers

Image Specifier Meaning

B Specifies that one byte is to be entered and interpreted as an integer in the range
0 through 255.

w Specifies that one 16-bit word is to be entered and interpreted as a 16-bit, two’s
complement INTEGER. Since all HP Instrument BASIC interfaces are 8-bit,
two bytes are always entered; the first byte entered is most significant. If the
source is a file, or string variable, all data are entered as bytes; however, one byte
may still be entered and ignored when necessary to achieve alignment on a word
boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment.

Entering Data 5-13

Examples of Binary Images
Enter three bytes, then look for LF or END indication:
ENTER €Device USING "B,B,B";N1,N2,N3

Enter the first two bytes as an INTEGER, then the rest as string data:
ENTER @Device USING "W,K";N,N$

Terminating Enters that Use Images

This section describes the default statement-termination conditions for enters that use images
(for devices). The effects of numeric-item and string-item terminators and the end-or-identify
(EOI) signal during these operations are discussed in this section. After reading this section,
you will be able to better understand how enters that use images work and how the default
statement-termination conditions are modified by the #, %, +, and - image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar to
those required to terminate free-field enters. Either of the following conditions will properly
terminate an ENTER statement that uses an image.

® An END indication (such as the EOI signal or end-of-data) is received with the byte that
satisfies the last image item within 256 bytes after the byte that satisfied the last image
item.

m A line-feed is received as the byte that satisfies the last image item (exceptions are the “B”
and “W” specifiers) or within 256 bytes after the byte that satisfied the last image item.

EOI Re-Definition

It is important to realize that when an enter uses an image (when the secondary keyword
“USING” is specified), the definition of the EOI signal is automatically modified. If the

EOI signal terminates the last image item, the entire statement is properly terminated, as
with free-field enters. In addition, multiple EOI signals are now allowed and act as item
terminators; however, the EOI must be received with the byte that satisfies each image item.
If the EOI is received before any image is satisfied, it is ignored. Thus, all images must be
satisfied, and EOI will not cause early termination of the ENTER-USING-image statement.

The following table summarizes the definitions of EOI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next section.

5-14 Entering Data

Effects of EOl During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements without # or % with # with %
Definition of EOI Immediate Item terminator |Item terminator |Immediate
statement or statement or statement statement
terminator terminator terminator terminator
Statement Terminator | Yes Yes No No
Required?
Early Termination No No No Yes
Allowed?

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first one
of these specifiers encountered in the image list modifies the termination conditions for the
ENTER statement. If <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>